Advertisements
Advertisements
प्रश्न
An insect is crawling along the line `barr = 6hati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)` and another insect is crawling along the line `barr = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`. At what points on the lines should they reach so that the distance between them s the shortest? Find the shortest possible distance between them.
उत्तर
The given lines are non-parallel lines. There is a unique line segment PQ (P lying on one and Q on the other) at right angles to both lines. PQ is the shortest distance between the lines. Hence, the shortest possible distance between the insects = PQ
The position vector of P lying on the line
`barr = 6hati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)` is `(6 + λ)hati + (2 - 2λ)hatj + (2 + 2λ)hatk` for some λ
The position vector of Q lying on the line
`vecr = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)` is `(-4 + 3μ)hati + (-2μ)hatj + (-1 - 2μ)hatk` for some μ
`vec(PQ) = (- 10 + 3μ - λ)hati + (-2μ - 2 + 2λ)hatj + (-3 - 2μ - 2λ)hatk`
Since PQ is perpendicular to both lines
`(-10 + 3μ - λ) + (-2μ - 2 + 2λ)(-2) + (-3 - 2μ - 2λ)2` = 0,
i.e., μ – 3λ = 4 ...(i)
And (–10 + 3μ – λ)3 + (–2μ –2 + 2λ)(–2) + (–3 – 2μ – 2λ)(–2) = 0,
i.e., 17μ – 3λ = 20 ...(ii)
Solving (i) and (ii) for λ and μ, we get = 1, 1 = –1.
The position vector of the points, at which they should be so that the distance between them is the shortest, is `5hati + 4hatj` and `-hati - 2hatj - 3hatk`
`vec(PQ) = - 6hati - 6hatj - 3hatk`
The shortest distance = `|vec(PQ)|`
= `sqrt(6^2 + 6^2 + 3^2)`
= 9
APPEARS IN
संबंधित प्रश्न
If the lines
`(x-1)/-3=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-5)/1=(z-6)/-5`
are at right angle then find the value of k
Show that the following two lines are coplanar:
`(x−a+d)/(α−δ)= (y−a)/α=(z−a−d)/(α+δ) and (x−b+c)/(β−γ)=(y−b)/β=(z−b−c)/(β+γ)`
Show that lines:
`vecr=hati+hatj+hatk+lambda(hati-hat+hatk)`
`vecr=4hatj+2hatk+mu(2hati-hatj+3hatk)` are coplanar
Also, find the equation of the plane containing these lines.
Find the shortest distance between the lines.
`(x + 1)/7 = (y + 1)/(- 6) = (z + 1)/1` and `(x - 3)/1 = (y - 5)/(- 2) = (z - 7)/1`.
Find the shortest distance between the lines whose vector equations are `vecr = (hati + 2hatj + 3hatk) + lambda(hati - 3hatj + 2hatk)` and `vecr = 4hati + 5hatj + 6hatk + mu(2hati + 3hatj + hatk)`.
Find the shortest distance between the lines whose vector equations are `vecr = (1-t)hati + (t - 2)hatj + (3 -2t)hatk` and `vecr = (s+1)hati + (2s + 1)hatk`.
Find the shortest distance between the lines `vecr = (4hati - hatj) + lambda(hati+2hatj-3hatk)` and `vecr = (hati - hatj + 2hatk) + mu(2hati + 4hatj - 5hatk)`
Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k + lambda(2 hat i + 3hatj + 4hatk)` and `vec r = 2hat i + 4 hat j + 5 hat k + mu (4hat i + 6 hat j + 8 hat k)`
Find the shortest distance between the lines
Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`
The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h. |
Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:
The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h. |
The total cost of the train to travel 500 km at the most economical speed is:
Find the angle between the following pair of lines:- `(x - 2)/ = (y - 1)/5 = (z + 3)/(-3)` and `(x + 2)/(-1) = (y - 4)/8 = (z - 5)/4`
What will be the shortest distance between the lines, `vecr = (hati + 2hatj + hatk) + lambda(hati - hatj + hatk)` and `vecr = (2hati - hatj - hatk) + mu(2hati + hatj + 2hatk)`
Determine the distance from the origin to the plane in the following case x + y + z = 1
The planes `2x - y + 4z` = 5 and `5x - 2.5y + 10z` = 6
Read the following passage and answer the questions given below.
Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines `vecr = λ(hati + 2hatj - hatk)` and `vecr = (3hati + 3hatj) + μ(2hati + hatj + hatk)` respectively. |
Based on the above information, answer the following questions:
- Find the shortest distance between the given lines.
- Find the point at which the motorcycles may collide.
Find the shortest distance between the following lines:
`vecr = 3hati + 5hatj + 7hatk + λ(hati - 2hatj + hatk)` and `vecr = (-hati - hatj - hatk) + μ(7hati - 6hatj + hatk)`.
The largest value of a, for which the perpendicular distance of the plane containing the lines `vec"r" = (hat"i" + hat"j") + λ(hat"i" + "a"hat"j" - hat"k")` and `vec"r" = (hat"i" + hat"j") + μ(-hat"i" + hat"j" - "a"hat"k")` from the point (2, 1, 4) is `sqrt(3)`, is ______.
If the shortest distance between the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/λ` and `(x - 2)/1 = (y - 4)/4 = (z - 5)/5` is `1/sqrt(3)`, then the sum of all possible values of λ is ______.
The lines `vecr = hati + hatj - hatk + λ(2hati + 3hatj - 6hatk)` and `vecr = 2hati - hatj - hatk + μ(6hati + 9hatj - 18hatk)`; (where λ and μ are scalars) are ______.
Show that the line whose vector equation is `vecr = (2hati - 2hatj + 3hatk) + λ(hati - hatj + 4hatk)` is parallel to the plane whose vector equation is `vecr.(hati + 5hatj + hatk) = 5`. Also find the distance between them.