English

Find the distance between the lines: λr→=(i^+2j^-4k^)+λ(2i^+3j^+6k^); μr→=(3i^+3j^-5k^)+μ(4i^+6j^+12k^) - Mathematics

Advertisements
Advertisements

Question

Find the distance between the lines:

`vecr = (hati + 2hatj - 4hatk) + λ(2hati + 3hatj + 6hatk)`;

`vecr = (3hati + 3hatj - 5hatk) + μ(4hati + 6hatj + 12hatk)`

Sum

Solution

Lines are parallel

`a_1/a_2 = b_1/b_2 = c_1/c_2`

`2/4 = 3/6 = 6/12`

`1/2 = 1/2 = 1/2`

`vecb = 2hati + 3hatj + 6hatk`

`|vecb| = sqrt(4 + 9 + 36)`

= `sqrt(49)`

= 7

S.D. = `|(vecb xx (veca_2 - veca_1))/|vecb||`

`veca_1 = hati + 2hatj - 4hatk`

`veca_2 = 3hati + 3hatj - 5hatk`

`veca_2 - veca_1 = 2hati + hatj - hatk`

`vecb xx (veca_2 - veca_1) = |(hati, hatj, hatk),(2, 3, 6),(2, 1, -1)|`

= `-9hati + 14hatj - 4hatk`

`|vecb xx (veca_2 - veca_1)| = sqrt(81 + 196 + 16)`

= `sqrt(293)`

S.D. = `sqrt(293)/7` units.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Delhi Set 1

RELATED QUESTIONS

If the lines

`(x-1)/-3=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-5)/1=(z-6)/-5`

are at right angle then find the value of k

 

Find the shortest distance between the lines

`bar r = (4 hat i - hat j) + lambda(hat i + 2 hat j - 3 hat k)`

and

`bar r = (hat i - hat j + 2 hat k) + mu(hat i + 4 hat j -5 hat k)`

where λ and μ are parameters

 

Show that the following two lines are coplanar:

`(x−a+d)/(α−δ)= (y−a)/α=(z−a−d)/(α+δ) and (x−b+c)/(β−γ)=(y−b)/β=(z−b−c)/(β+γ)`


 

Show that lines: 

`vecr=hati+hatj+hatk+lambda(hati-hat+hatk)`

`vecr=4hatj+2hatk+mu(2hati-hatj+3hatk)` are coplanar 

Also, find the equation of the plane containing these lines.

 

Find the distance between the planes 2x - y +  2z = 5 and 5x - 2.5y + 5z = 20


Find the shortest distance between the lines: 

`vecr = (hati+2hatj+hatk) + lambda(hati-hatj+hatk)` and `vecr = 2hati - hatj - hatk + mu(2hati + hatj + 2hatk)`


Find the shortest distance between the lines.

`(x + 1)/7 = (y + 1)/(- 6) = (z + 1)/1` and `(x - 3)/1 = (y - 5)/(- 2) = (z - 7)/1`.


Find the shortest distance between the lines whose vector equations are `vecr = (hati + 2hatj + 3hatk) + lambda(hati - 3hatj + 2hatk)` and `vecr = 4hati + 5hatj + 6hatk + mu(2hati + 3hatj + hatk)`.


Find the shortest distance between the lines whose vector equations are `vecr = (1-t)hati + (t - 2)hatj + (3 -2t)hatk` and `vecr = (s+1)hati + (2s + 1)hatk`.


Find the shortest distance between the lines `(x+1)/7=(y+1)/(-6)=(z+1)/1 and (x-3)/1=(y-5)/(-2)=(z-7)/1`


Find the shortest distance between the lines `vecr = (4hati - hatj) + lambda(hati+2hatj-3hatk)` and `vecr = (hati - hatj + 2hatk) + mu(2hati + 4hatj - 5hatk)`


Find the shortest distance between the lines

\[\frac{x - 2}{- 1} = \frac{y - 5}{2} = \frac{z - 0}{3} \text{ and }  \frac{x - 0}{2} = \frac{y + 1}{- 1} = \frac{z - 1}{2} .\]
 

Find the shortest distance between the lines 

\[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} .\]
 

Find the shortest distance between the lines

\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\] and
\[3x - y - 2z + 4 = 0 = 2x + y + z + 1\]
 

Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`


Find the shortest distance between the following lines:

`vecr = (hati + hatj - hatk) + s(2hati + hatj + hatk)`

`vecr = (hati + hatj - 2hatk) + t(4hati + 2hatj + 2hatk)`


Find the equation of line which passes through the point (1, 2, 3) and is parallel to the vector `3hati + 2hatj - 2hatk`


Find the angle between the following pair of lines:- `(x - 2)/ = (y - 1)/5 = (z + 3)/(-3)` and `(x + 2)/(-1) = (y - 4)/8 = (z - 5)/4`


Determine the distance from the origin to the plane in the following case x + y + z = 1


The planes `2x - y + 4z` = 5 and `5x - 2.5y + 10z` = 6


Find the shortest distance between the lines, `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr = - 4hati - hatk + mu(3hati - 2hatj - 2hatk)`


Read the following passage and answer the questions given below.

Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines `vecr = λ(hati + 2hatj - hatk)` and `vecr = (3hati + 3hatj) + μ(2hati + hatj + hatk)` respectively.

Based on the above information, answer the following questions:

  1. Find the shortest distance between the given lines.
  2. Find the point at which the motorcycles may collide.

Find the shortest distance between the following lines:

`vecr = 3hati + 5hatj + 7hatk + λ(hati - 2hatj + hatk)` and `vecr = (-hati - hatj - hatk) + μ(7hati - 6hatj + hatk)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×