English

Find the shortest distance between the lines given by rijkr→=(8+3λi^-(9+16λ)j^+(10+7λ)k^ and rijkijkr→=15i^+29j^+5k^+μ(3i^+8j^-5k^) - Mathematics

Advertisements
Advertisements

Question

Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`

Sum

Solution

Given equations of lines are

`vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"`   ......(i)

And `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`   ......(ii)

Equation (i) can be re-written as

`vec"r" = 8hat"i" - 9hat"j" + 10hat"k" + lambda(3hat"i" - 16hat"j" + 7hat"k")`  ......(iii)

Here, `vec"a"_1 = 8hat"i" - 9hat"j" + 10hat"k"` and `vec"a"_2 - 15hat"i" + 29hat"j" + 5hat"k"`

`vec"b"_1 = 3hat"i" - 16hat"j" + 7hat"k"` and `vec"b"_2 = 3hat"i" + 8hat"j" - 5hat"k"`

`vec"a"_2 - vec"a"_1 = 7hat"i" + 38hat"j" - 5hat"k"`

`vec"b"_1 xx vec"b"_2 = |(hat"i", hat"j", hat"k"),(3, -16, 7),(3, 8, -5)|`

= `hat"i"(80 - 56) - hat"j"(-15 - 21) + hat"k"(24 + 48)`

= `24hat"i" + 36hat"j" + 72hat"k"`

∴ Shortest distance, SD = `|((vec"a"_2 - vec"a"_1)*(vec"b"_1 xx vec"b"_2))/(|vec"b"_1 xx vec"b"_2|)|`

= `|((7hat"i" + 38hat"j" - 5hat"k")*(24hat"i" + 36hat"j" + 72hat"k"))/sqrt((24)^2 + (36)^2 + (72)^2)|`

= `|(168 + 1368 + 360)/sqrt(576 + 1296 + 5184)|`

= `|(168 + 1008)/sqrt(7056)|`

= 14 units.

Hence, the required distance is 14 units.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Exercise [Page 237]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Exercise | Q 21 | Page 237

RELATED QUESTIONS

If the lines

`(x-1)/-3=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-5)/1=(z-6)/-5`

are at right angle then find the value of k

 

Show that the following two lines are coplanar:

`(x−a+d)/(α−δ)= (y−a)/α=(z−a−d)/(α+δ) and (x−b+c)/(β−γ)=(y−b)/β=(z−b−c)/(β+γ)`


 

Show that lines: 

`vecr=hati+hatj+hatk+lambda(hati-hat+hatk)`

`vecr=4hatj+2hatk+mu(2hati-hatj+3hatk)` are coplanar 

Also, find the equation of the plane containing these lines.

 

Find the distance between the planes 2x - y +  2z = 5 and 5x - 2.5y + 5z = 20


Find the shortest distance between the lines: 

`vecr = (hati+2hatj+hatk) + lambda(hati-hatj+hatk)` and `vecr = 2hati - hatj - hatk + mu(2hati + hatj + 2hatk)`


Find the shortest distance between the lines whose vector equations are `vecr = (hati + 2hatj + 3hatk) + lambda(hati - 3hatj + 2hatk)` and `vecr = 4hati + 5hatj + 6hatk + mu(2hati + 3hatj + hatk)`.


Find the shortest distance between the lines `vecr = (4hati - hatj) + lambda(hati+2hatj-3hatk)` and `vecr = (hati - hatj + 2hatk) + mu(2hati + 4hatj - 5hatk)`


Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k +  lambda(2 hat i +  3hatj +  4hatk)` and `vec r =  2hat i +  4 hat j + 5 hat k +  mu (4hat i + 6 hat j +  8 hat k)`


Find the shortest distance between the lines 

\[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} .\]
 

Find the shortest distance between the lines

\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\] and
\[3x - y - 2z + 4 = 0 = 2x + y + z + 1\]
 

The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The fuel cost for the train to travel 500 km at the most economical speed is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The total cost of the train to travel 500 km at the most economical speed is:


Find the shortest distance between the following lines:

`vecr = (hati + hatj - hatk) + s(2hati + hatj + hatk)`

`vecr = (hati + hatj - 2hatk) + t(4hati + 2hatj + 2hatk)`


Find the equation of line which passes through the point (1, 2, 3) and is parallel to the vector `3hati + 2hatj - 2hatk`


Find the angle between the following pair of lines:- `(x - 2)/ = (y - 1)/5 = (z + 3)/(-3)` and `(x + 2)/(-1) = (y - 4)/8 = (z - 5)/4`


Distance between the planes :- 

`2x + 3y + 4z = 4` and `4x + 6y + 8z = 12` is


An insect is crawling along the line `barr = 6hati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)` and another insect is crawling along the line `barr = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`. At what points on the lines should they reach so that the distance between them s the shortest? Find the shortest possible distance between them.


Find the shortest distance between the following lines:

`vecr = 3hati + 5hatj + 7hatk + λ(hati - 2hatj + hatk)` and `vecr = (-hati - hatj - hatk) + μ(7hati - 6hatj + hatk)`.


If the shortest distance between the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/λ` and `(x - 2)/1 = (y - 4)/4 = (z - 5)/5` is `1/sqrt(3)`, then the sum of all possible values of λ is ______.


The shortest distance between the z-axis and the line x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4, is ______.


The lines `vecr = hati + hatj - hatk + λ(2hati + 3hatj - 6hatk)` and `vecr = 2hati - hatj - hatk + μ(6hati + 9hatj - 18hatk)`; (where λ and μ are scalars) are ______.


An aeroplane is flying along the line `vecr = λ(hati - hatj + hatk)`; where 'λ' is a scalar and another aeroplane is flying along the line `vecr = hati - hatj + μ(-2hatj + hatk)`; where 'μ' is a scalar. At what points on the lines should they reach, so that the distance between them is the shortest? Find the shortest possible distance between them.


Show that the line whose vector equation is `vecr = (2hati - 2hatj + 3hatk) + λ(hati - hatj + 4hatk)` is parallel to the plane whose vector equation is `vecr.(hati + 5hatj + hatk) = 5`. Also find the distance between them.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×