English

Find the Shortest Distance Between the Lines X − 1 2 = Y − 3 4 = Z + 2 1 and 3 X − Y − 2 Z + 4 = 0 = 2 X + Y + Z + 1 - Mathematics

Advertisements
Advertisements

Question

Find the shortest distance between the lines

\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\] and
\[3x - y - 2z + 4 = 0 = 2x + y + z + 1\]
 

Solution

The equation of the plane containing the line

\[3x - y - 2z + 4 = 0 = 2x + y + z + 1\] is 
\[\left( 3x - y - 2z + 4 \right) + \lambda\left( 2x + y + z + 1 \right) = 0\]

\[\text{ Or } \left( 3 + 2\lambda \right)x + \left( \lambda - 1 \right)y + \left( \lambda - 2 \right)z + \left( \lambda + 4 \right) = 0 . . . . . \left( 1 \right)\]

If it is parallel to the line

\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\] , then 

\[2\left( 3 + 2\lambda \right) + 4\left( \lambda - 1 \right) + \left( \lambda - 2 \right) = 0\]

\[ \Rightarrow 9\lambda = 0\]

\[ \Rightarrow \lambda = 0\]

Putting

\[\lambda = 0\]   in (1), we get
\[3x - y - 2z + 4 = 0 . . . . . \left( 2 \right)\]
This is the equation of the plane containing the second line and parallel to the first line.
Now, the line
\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\]

passes through (1, 3, −2).

∴ Shortest distance between the given lines

= Length of the perpendicular from (1, 3, −2) to the plane

\[3x - y - 2z + 4 = 0\]

\[= \left| \frac{3 \times 1 - 3 - 2 \times \left( - 2 \right) + 4}{\sqrt{3^2 + \left( - 1 \right)^2 + \left( - 2 \right)^2}} \right|\]
\[ = \left| \frac{3 - 3 + 4 + 4}{\sqrt{9 + 1 + 4}} \right|\]
\[ = \frac{8}{\sqrt{14}} \text{ units } \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.14 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.14 | Q 3 | Page 77

RELATED QUESTIONS

Find the shortest distance between the lines

`bar r = (4 hat i - hat j) + lambda(hat i + 2 hat j - 3 hat k)`

and

`bar r = (hat i - hat j + 2 hat k) + mu(hat i + 4 hat j -5 hat k)`

where λ and μ are parameters

 

Show that the following two lines are coplanar:

`(x−a+d)/(α−δ)= (y−a)/α=(z−a−d)/(α+δ) and (x−b+c)/(β−γ)=(y−b)/β=(z−b−c)/(β+γ)`


Find the distance between the planes 2x - y +  2z = 5 and 5x - 2.5y + 5z = 20


Find the shortest distance between the lines: 

`vecr = (hati+2hatj+hatk) + lambda(hati-hatj+hatk)` and `vecr = 2hati - hatj - hatk + mu(2hati + hatj + 2hatk)`


Find the shortest distance between the lines.

`(x + 1)/7 = (y + 1)/(- 6) = (z + 1)/1` and `(x - 3)/1 = (y - 5)/(- 2) = (z - 7)/1`.


Find the shortest distance between the lines whose vector equations are `vecr = (hati + 2hatj + 3hatk) + lambda(hati - 3hatj + 2hatk)` and `vecr = 4hati + 5hatj + 6hatk + mu(2hati + 3hatj + hatk)`.


Find the shortest distance between lines `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr =-4hati - hatk + mu(3hati - 2hatj - 2hatk)`.


Find the shortest distance between the lines `(x+1)/7=(y+1)/(-6)=(z+1)/1 and (x-3)/1=(y-5)/(-2)=(z-7)/1`


Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k +  lambda(2 hat i +  3hatj +  4hatk)` and `vec r =  2hat i +  4 hat j + 5 hat k +  mu (4hat i + 6 hat j +  8 hat k)`


Find the shortest distance between the lines

\[\frac{x - 2}{- 1} = \frac{y - 5}{2} = \frac{z - 0}{3} \text{ and }  \frac{x - 0}{2} = \frac{y + 1}{- 1} = \frac{z - 1}{2} .\]
 

Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

If the train has travelled a distance of 500 km, then the total cost of running the train is given by the function:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The most economical speed to run the train is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The fuel cost for the train to travel 500 km at the most economical speed is:


Find the equation of line which passes through the point (1, 2, 3) and is parallel to the vector `3hati + 2hatj - 2hatk`


What will be the shortest distance between the lines, `vecr = (hati + 2hatj + hatk) + lambda(hati - hatj + hatk)` and `vecr = (2hati - hatj - hatk) + mu(2hati + hatj + 2hatk)`


Distance between the planes :- 

`2x + 3y + 4z = 4` and `4x + 6y + 8z = 12` is


Find the shortest distance between the lines, `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr = - 4hati - hatk + mu(3hati - 2hatj - 2hatk)`


An insect is crawling along the line `barr = 6hati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)` and another insect is crawling along the line `barr = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`. At what points on the lines should they reach so that the distance between them s the shortest? Find the shortest possible distance between them.


Read the following passage and answer the questions given below.

Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines `vecr = λ(hati + 2hatj - hatk)` and `vecr = (3hati + 3hatj) + μ(2hati + hatj + hatk)` respectively.

Based on the above information, answer the following questions:

  1. Find the shortest distance between the given lines.
  2. Find the point at which the motorcycles may collide.

Find the shortest distance between the following lines:

`vecr = 3hati + 5hatj + 7hatk + λ(hati - 2hatj + hatk)` and `vecr = (-hati - hatj - hatk) + μ(7hati - 6hatj + hatk)`.


If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.


The largest value of a, for which the perpendicular distance of the plane containing the lines `vec"r" = (hat"i" + hat"j") + λ(hat"i" + "a"hat"j" - hat"k")` and `vec"r" = (hat"i" + hat"j") + μ(-hat"i" + hat"j" - "a"hat"k")` from the point (2, 1, 4) is `sqrt(3)`, is ______.


The shortest distance between the z-axis and the line x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4, is ______.


The lines `vecr = hati + hatj - hatk + λ(2hati + 3hatj - 6hatk)` and `vecr = 2hati - hatj - hatk + μ(6hati + 9hatj - 18hatk)`; (where λ and μ are scalars) are ______.


Show that the line whose vector equation is `vecr = (2hati - 2hatj + 3hatk) + λ(hati - hatj + 4hatk)` is parallel to the plane whose vector equation is `vecr.(hati + 5hatj + hatk) = 5`. Also find the distance between them.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×