मराठी

Find the Shortest Distance Between the Lines X − 1 2 = Y − 3 4 = Z + 2 1 and 3 X − Y − 2 Z + 4 = 0 = 2 X + Y + Z + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the shortest distance between the lines

\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\] and
\[3x - y - 2z + 4 = 0 = 2x + y + z + 1\]
 

उत्तर

The equation of the plane containing the line

\[3x - y - 2z + 4 = 0 = 2x + y + z + 1\] is 
\[\left( 3x - y - 2z + 4 \right) + \lambda\left( 2x + y + z + 1 \right) = 0\]

\[\text{ Or } \left( 3 + 2\lambda \right)x + \left( \lambda - 1 \right)y + \left( \lambda - 2 \right)z + \left( \lambda + 4 \right) = 0 . . . . . \left( 1 \right)\]

If it is parallel to the line

\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\] , then 

\[2\left( 3 + 2\lambda \right) + 4\left( \lambda - 1 \right) + \left( \lambda - 2 \right) = 0\]

\[ \Rightarrow 9\lambda = 0\]

\[ \Rightarrow \lambda = 0\]

Putting

\[\lambda = 0\]   in (1), we get
\[3x - y - 2z + 4 = 0 . . . . . \left( 2 \right)\]
This is the equation of the plane containing the second line and parallel to the first line.
Now, the line
\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\]

passes through (1, 3, −2).

∴ Shortest distance between the given lines

= Length of the perpendicular from (1, 3, −2) to the plane

\[3x - y - 2z + 4 = 0\]

\[= \left| \frac{3 \times 1 - 3 - 2 \times \left( - 2 \right) + 4}{\sqrt{3^2 + \left( - 1 \right)^2 + \left( - 2 \right)^2}} \right|\]
\[ = \left| \frac{3 - 3 + 4 + 4}{\sqrt{9 + 1 + 4}} \right|\]
\[ = \frac{8}{\sqrt{14}} \text{ units } \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.14 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.14 | Q 3 | पृष्ठ ७७

संबंधित प्रश्‍न

If the lines

`(x-1)/-3=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-5)/1=(z-6)/-5`

are at right angle then find the value of k

 

Find the shortest distance between the lines

`bar r = (4 hat i - hat j) + lambda(hat i + 2 hat j - 3 hat k)`

and

`bar r = (hat i - hat j + 2 hat k) + mu(hat i + 4 hat j -5 hat k)`

where λ and μ are parameters

 

 

Show that lines: 

`vecr=hati+hatj+hatk+lambda(hati-hat+hatk)`

`vecr=4hatj+2hatk+mu(2hati-hatj+3hatk)` are coplanar 

Also, find the equation of the plane containing these lines.

 

Find the shortest distance between the lines: 

`vecr = (hati+2hatj+hatk) + lambda(hati-hatj+hatk)` and `vecr = 2hati - hatj - hatk + mu(2hati + hatj + 2hatk)`


Find the shortest distance between the lines whose vector equations are `vecr = (1-t)hati + (t - 2)hatj + (3 -2t)hatk` and `vecr = (s+1)hati + (2s + 1)hatk`.


Find the shortest distance between the lines `vecr = (4hati - hatj) + lambda(hati+2hatj-3hatk)` and `vecr = (hati - hatj + 2hatk) + mu(2hati + 4hatj - 5hatk)`


Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k +  lambda(2 hat i +  3hatj +  4hatk)` and `vec r =  2hat i +  4 hat j + 5 hat k +  mu (4hat i + 6 hat j +  8 hat k)`


Find the shortest distance between the lines

\[\frac{x - 2}{- 1} = \frac{y - 5}{2} = \frac{z - 0}{3} \text{ and }  \frac{x - 0}{2} = \frac{y + 1}{- 1} = \frac{z - 1}{2} .\]
 

Find the shortest distance between the lines 

\[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} .\]
 

Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

If the train has travelled a distance of 500 km, then the total cost of running the train is given by the function:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The most economical speed to run the train is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The total cost of the train to travel 500 km at the most economical speed is:


Find the shortest distance between the following lines:

`vecr = (hati + hatj - hatk) + s(2hati + hatj + hatk)`

`vecr = (hati + hatj - 2hatk) + t(4hati + 2hatj + 2hatk)`


Find the angle between the following pair of lines:- `(x - 2)/ = (y - 1)/5 = (z + 3)/(-3)` and `(x + 2)/(-1) = (y - 4)/8 = (z - 5)/4`


The planes `2x - y + 4z` = 5 and `5x - 2.5y + 10z` = 6


An insect is crawling along the line `barr = 6hati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)` and another insect is crawling along the line `barr = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`. At what points on the lines should they reach so that the distance between them s the shortest? Find the shortest possible distance between them.


Read the following passage and answer the questions given below.

Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines `vecr = λ(hati + 2hatj - hatk)` and `vecr = (3hati + 3hatj) + μ(2hati + hatj + hatk)` respectively.

Based on the above information, answer the following questions:

  1. Find the shortest distance between the given lines.
  2. Find the point at which the motorcycles may collide.

Find the shortest distance between the following lines:

`vecr = 3hati + 5hatj + 7hatk + λ(hati - 2hatj + hatk)` and `vecr = (-hati - hatj - hatk) + μ(7hati - 6hatj + hatk)`.


If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.


The shortest distance between the line y = x and the curve y2 = x – 2 is ______.


If the shortest distance between the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/λ` and `(x - 2)/1 = (y - 4)/4 = (z - 5)/5` is `1/sqrt(3)`, then the sum of all possible values of λ is ______.


The shortest distance between the z-axis and the line x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×