मराठी

If the shortest distance between the lines αλr→1=αi^+2j^+2k^+λ(i^-2j^+2k^), λ∈R, α > 0 μr→2=-4i^-k^+μ(3i^-2j^-2k^), μ∈R is 9, then α is equal to ______. -

Advertisements
Advertisements

प्रश्न

If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.

पर्याय

  • 3

  • 4

  • 5

  • 6

MCQ
रिकाम्या जागा भरा

उत्तर

If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to 6.

Explanation:

Given the equation of lines

`vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`

`vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`

Shortest distance = `|((veca_1 xx veca_2).(vecb_1 xx vecb_2))/|vecb_1 xx vecb_2||`

∴ 9 = `|(((α + 4)hati + 2hatj + 3hatk).(8hati + 8hatj + 4hatk))/sqrt(64 + 64 + 16)|`

⇒ `|(8(α + 4) + 16 + 12)/12|` = 9

∴ α = 6, as α > 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×