English

Find the Distance Between the Planes 2x - Y + 2z = 5 and 5x - 2.5y + 5z = 20 - Mathematics

Advertisements
Advertisements

Question

Find the distance between the planes 2x - y +  2z = 5 and 5x - 2.5y + 5z = 20

Solution 1

`2/5 = - 1/(-2.5) = 2/5`

`2/5 = 2/5  = 2/5`

⇒ parallel planes

`5x - 5/2 y + 5z= 20 xx 2/5`

`=> 2x - y + 2z = 8` and `2x - y + 2z = 5`

`=> d = |(8-5)/sqrt(4+1+4)| = 3/sqrt9 = "1 unit"`

shaalaa.com

Solution 2

Consider the equations of planes, 2x – y + 2z = 5 and 5x – 2.5y + 5z = 20.

Here, we can see the above two planes are parallel planes.

As, 5x – 2.5y + 5z = 20 can also be written as 2x – y + 2z = 8

If the equation of two parallel planes are

ax + by + cz + d1 = 0 and ax + by + cz + d2 = 0

Then, distance between the two parallel planes is given by:

`d = |(d_2 - d_1)/sqrt(a^2 +b^2 +c^2)|`

let us take the two parallel planes be 2– y + 2= 5 and 2x – y + 2z = 8

Therefore the distance is given by:

`d = |(5-8)/(sqrt(2^2 + (-1)^2 +2^2))|`

= `|(-3)/(sqrt(2^2 + (-1)^2) + 2^2)|`

= `|(-3)/sqrt(4+1+4)|`

= `|(-3)/3|`

= 1

Hence the distance between the given two planes is 1 units.

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) All India Set 1

RELATED QUESTIONS

If the lines

`(x-1)/-3=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-5)/1=(z-6)/-5`

are at right angle then find the value of k

 

Find the shortest distance between the lines.

`(x + 1)/7 = (y + 1)/(- 6) = (z + 1)/1` and `(x - 3)/1 = (y - 5)/(- 2) = (z - 7)/1`.


Find the shortest distance between the lines whose vector equations are `vecr = (hati + 2hatj + 3hatk) + lambda(hati - 3hatj + 2hatk)` and `vecr = 4hati + 5hatj + 6hatk + mu(2hati + 3hatj + hatk)`.


Find the shortest distance between lines `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr =-4hati - hatk + mu(3hati - 2hatj - 2hatk)`.


Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k +  lambda(2 hat i +  3hatj +  4hatk)` and `vec r =  2hat i +  4 hat j + 5 hat k +  mu (4hat i + 6 hat j +  8 hat k)`


Find the shortest distance between the lines 

\[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} .\]
 

Find the shortest distance between the lines

\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\] and
\[3x - y - 2z + 4 = 0 = 2x + y + z + 1\]
 

Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The most economical speed to run the train is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The fuel cost for the train to travel 500 km at the most economical speed is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The total cost of the train to travel 500 km at the most economical speed is:


Determine the distance from the origin to the plane in the following case x + y + z = 1


Distance between the planes :- 

`2x + 3y + 4z = 4` and `4x + 6y + 8z = 12` is


The planes `2x - y + 4z` = 5 and `5x - 2.5y + 10z` = 6


If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.


The largest value of a, for which the perpendicular distance of the plane containing the lines `vec"r" = (hat"i" + hat"j") + λ(hat"i" + "a"hat"j" - hat"k")` and `vec"r" = (hat"i" + hat"j") + μ(-hat"i" + hat"j" - "a"hat"k")` from the point (2, 1, 4) is `sqrt(3)`, is ______.


The shortest distance between the z-axis and the line x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4, is ______.


Find the distance between the lines:

`vecr = (hati + 2hatj - 4hatk) + λ(2hati + 3hatj + 6hatk)`;

`vecr = (3hati + 3hatj - 5hatk) + μ(4hati + 6hatj + 12hatk)`


The lines `vecr = hati + hatj - hatk + λ(2hati + 3hatj - 6hatk)` and `vecr = 2hati - hatj - hatk + μ(6hati + 9hatj - 18hatk)`; (where λ and μ are scalars) are ______.


An aeroplane is flying along the line `vecr = λ(hati - hatj + hatk)`; where 'λ' is a scalar and another aeroplane is flying along the line `vecr = hati - hatj + μ(-2hatj + hatk)`; where 'μ' is a scalar. At what points on the lines should they reach, so that the distance between them is the shortest? Find the shortest possible distance between them.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×