Advertisements
Advertisements
Question
Find the distance between the planes 2x - y + 2z = 5 and 5x - 2.5y + 5z = 20
Solution 1
`2/5 = - 1/(-2.5) = 2/5`
`2/5 = 2/5 = 2/5`
⇒ parallel planes
`5x - 5/2 y + 5z= 20 xx 2/5`
`=> 2x - y + 2z = 8` and `2x - y + 2z = 5`
`=> d = |(8-5)/sqrt(4+1+4)| = 3/sqrt9 = "1 unit"`
Solution 2
Consider the equations of planes, 2x – y + 2z = 5 and 5x – 2.5y + 5z = 20.
Here, we can see the above two planes are parallel planes.
As, 5x – 2.5y + 5z = 20 can also be written as 2x – y + 2z = 8
If the equation of two parallel planes are
ax + by + cz + d1 = 0 and ax + by + cz + d2 = 0
Then, distance between the two parallel planes is given by:
`d = |(d_2 - d_1)/sqrt(a^2 +b^2 +c^2)|`
let us take the two parallel planes be 2x – y + 2z = 5 and 2x – y + 2z = 8
Therefore the distance is given by:
`d = |(5-8)/(sqrt(2^2 + (-1)^2 +2^2))|`
= `|(-3)/(sqrt(2^2 + (-1)^2) + 2^2)|`
= `|(-3)/sqrt(4+1+4)|`
= `|(-3)/3|`
= 1
Hence the distance between the given two planes is 1 units.
RELATED QUESTIONS
If the lines
`(x-1)/-3=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-5)/1=(z-6)/-5`
are at right angle then find the value of k
Find the shortest distance between the lines.
`(x + 1)/7 = (y + 1)/(- 6) = (z + 1)/1` and `(x - 3)/1 = (y - 5)/(- 2) = (z - 7)/1`.
Find the shortest distance between the lines whose vector equations are `vecr = (hati + 2hatj + 3hatk) + lambda(hati - 3hatj + 2hatk)` and `vecr = 4hati + 5hatj + 6hatk + mu(2hati + 3hatj + hatk)`.
Find the shortest distance between lines `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr =-4hati - hatk + mu(3hati - 2hatj - 2hatk)`.
Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k + lambda(2 hat i + 3hatj + 4hatk)` and `vec r = 2hat i + 4 hat j + 5 hat k + mu (4hat i + 6 hat j + 8 hat k)`
Find the shortest distance between the lines
Find the shortest distance between the lines
Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`
The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h. |
The most economical speed to run the train is:
The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h. |
The fuel cost for the train to travel 500 km at the most economical speed is:
The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h. |
The total cost of the train to travel 500 km at the most economical speed is:
Determine the distance from the origin to the plane in the following case x + y + z = 1
Distance between the planes :-
`2x + 3y + 4z = 4` and `4x + 6y + 8z = 12` is
The planes `2x - y + 4z` = 5 and `5x - 2.5y + 10z` = 6
If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.
The largest value of a, for which the perpendicular distance of the plane containing the lines `vec"r" = (hat"i" + hat"j") + λ(hat"i" + "a"hat"j" - hat"k")` and `vec"r" = (hat"i" + hat"j") + μ(-hat"i" + hat"j" - "a"hat"k")` from the point (2, 1, 4) is `sqrt(3)`, is ______.
The shortest distance between the z-axis and the line x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4, is ______.
Find the distance between the lines:
`vecr = (hati + 2hatj - 4hatk) + λ(2hati + 3hatj + 6hatk)`;
`vecr = (3hati + 3hatj - 5hatk) + μ(4hati + 6hatj + 12hatk)`
The lines `vecr = hati + hatj - hatk + λ(2hati + 3hatj - 6hatk)` and `vecr = 2hati - hatj - hatk + μ(6hati + 9hatj - 18hatk)`; (where λ and μ are scalars) are ______.
An aeroplane is flying along the line `vecr = λ(hati - hatj + hatk)`; where 'λ' is a scalar and another aeroplane is flying along the line `vecr = hati - hatj + μ(-2hatj + hatk)`; where 'μ' is a scalar. At what points on the lines should they reach, so that the distance between them is the shortest? Find the shortest possible distance between them.