Advertisements
Advertisements
Question
If the lines
`(x-1)/-3=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-5)/1=(z-6)/-5`
are at right angle then find the value of k
Solution
Given equations of the line are:
Let `bara` and `bar b` be vectors in the direction of lines `(x-1)/-3=(y-2)/(2k)=(z-3)/2` and `(x-1)/(3k)=(y-5)/1=(z-6)/-5 " respectively"`
`therefore bar a=-3hati+2khatj+2hatk and bar b=3khati+hatj-5hatk`
`bar a.bar b=-9k+2k-10=-7k-10`
Given lines are at right angle
`theta=90^@`
`costheta=(bar a.bar b)/(|bara|.|barb|)`
`bara.barb=0`
`-7k-10=0`
`k=-10/7`
APPEARS IN
RELATED QUESTIONS
Find the shortest distance between the lines
`bar r = (4 hat i - hat j) + lambda(hat i + 2 hat j - 3 hat k)`
and
`bar r = (hat i - hat j + 2 hat k) + mu(hat i + 4 hat j -5 hat k)`
where λ and μ are parameters
Show that lines:
`vecr=hati+hatj+hatk+lambda(hati-hat+hatk)`
`vecr=4hatj+2hatk+mu(2hati-hatj+3hatk)` are coplanar
Also, find the equation of the plane containing these lines.
Find the distance between the planes 2x - y + 2z = 5 and 5x - 2.5y + 5z = 20
Find the shortest distance between the lines:
`vecr = (hati+2hatj+hatk) + lambda(hati-hatj+hatk)` and `vecr = 2hati - hatj - hatk + mu(2hati + hatj + 2hatk)`
Find the shortest distance between the lines whose vector equations are `vecr = (hati + 2hatj + 3hatk) + lambda(hati - 3hatj + 2hatk)` and `vecr = 4hati + 5hatj + 6hatk + mu(2hati + 3hatj + hatk)`.
Find the shortest distance between lines `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr =-4hati - hatk + mu(3hati - 2hatj - 2hatk)`.
Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k + lambda(2 hat i + 3hatj + 4hatk)` and `vec r = 2hat i + 4 hat j + 5 hat k + mu (4hat i + 6 hat j + 8 hat k)`
Find the shortest distance between the lines
Find the shortest distance between the lines
The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h. |
Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:
The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h. |
The most economical speed to run the train is:
The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h. |
The fuel cost for the train to travel 500 km at the most economical speed is:
The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h. |
The total cost of the train to travel 500 km at the most economical speed is:
Find the shortest distance between the following lines:
`vecr = (hati + hatj - hatk) + s(2hati + hatj + hatk)`
`vecr = (hati + hatj - 2hatk) + t(4hati + 2hatj + 2hatk)`
Find the angle between the following pair of lines:- `(x - 2)/ = (y - 1)/5 = (z + 3)/(-3)` and `(x + 2)/(-1) = (y - 4)/8 = (z - 5)/4`
Determine the distance from the origin to the plane in the following case x + y + z = 1
Distance between the planes :-
`2x + 3y + 4z = 4` and `4x + 6y + 8z = 12` is
The planes `2x - y + 4z` = 5 and `5x - 2.5y + 10z` = 6
Find the shortest distance between the lines, `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr = - 4hati - hatk + mu(3hati - 2hatj - 2hatk)`
An insect is crawling along the line `barr = 6hati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)` and another insect is crawling along the line `barr = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`. At what points on the lines should they reach so that the distance between them s the shortest? Find the shortest possible distance between them.
Read the following passage and answer the questions given below.
Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines `vecr = λ(hati + 2hatj - hatk)` and `vecr = (3hati + 3hatj) + μ(2hati + hatj + hatk)` respectively. |
Based on the above information, answer the following questions:
- Find the shortest distance between the given lines.
- Find the point at which the motorcycles may collide.
If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.
The shortest distance between the line y = x and the curve y2 = x – 2 is ______.
The largest value of a, for which the perpendicular distance of the plane containing the lines `vec"r" = (hat"i" + hat"j") + λ(hat"i" + "a"hat"j" - hat"k")` and `vec"r" = (hat"i" + hat"j") + μ(-hat"i" + hat"j" - "a"hat"k")` from the point (2, 1, 4) is `sqrt(3)`, is ______.
If the shortest distance between the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/λ` and `(x - 2)/1 = (y - 4)/4 = (z - 5)/5` is `1/sqrt(3)`, then the sum of all possible values of λ is ______.
Find the distance between the lines:
`vecr = (hati + 2hatj - 4hatk) + λ(2hati + 3hatj + 6hatk)`;
`vecr = (3hati + 3hatj - 5hatk) + μ(4hati + 6hatj + 12hatk)`
The lines `vecr = hati + hatj - hatk + λ(2hati + 3hatj - 6hatk)` and `vecr = 2hati - hatj - hatk + μ(6hati + 9hatj - 18hatk)`; (where λ and μ are scalars) are ______.
Show that the line whose vector equation is `vecr = (2hati - 2hatj + 3hatk) + λ(hati - hatj + 4hatk)` is parallel to the plane whose vector equation is `vecr.(hati + 5hatj + hatk) = 5`. Also find the distance between them.