Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
उत्तर
`int_0^(π/2) sin 2x tan^-1 (sin x) dx`
= `int_0^(π/2) 2 sin x cos x tan^-1 (sin x)dx`
Let sin x = t
cos x dx = dt
When x = 0, t = 0 and x = `π/2`
`\implies` t = 1
`2int_0^1 t tan^-1 t dt`
= `2[tan^-1 t . t^2/2]_0^1 - 2int_0^1 1/(1 + t^2) . t^2/2 dt`
= `(π/4 . 1 - 0) - int_0^1 (t^2 + 1 - 1)/(1 + t^2)dt`
= `π/4 - int_0^1 (1 - 1/(1 + t^2))dt`
= `π/4 - [t - tan^-1 t]_0^1`
= `π/4 - [1 - π/4 - 0]`
= `π/4 - 1 + π/4`
= `π/2 - 1`.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
`int_0^1 x^2e^x dx` = ______.