Advertisements
Advertisements
प्रश्न
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
उत्तर
`int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`
We know
`int_-a^a "f" ("x")"d" "x" = 0` if f is an odd function i.e i f f (-x) = -f (x)
In the given integral,
`"f" ("x") = (1 - "x"^2) sin "x" cos^2 "x"`
⇒ `"f" (- "x") = (1- (-"x")^2) (sin (-"x")) cos^2 (-"x") = -(1 -"x"^2) sin "x" cos^2 "x"`
⇒ `"f" (-"x") = -"f" ("x")`
So, `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" "dx" = 0`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate:
`int (1 + cosx)/(sin^2x)dx`