Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} d x .............(1)\]
\[ \Rightarrow I = \int_0^a \frac{\sqrt{a - x}}{\sqrt{a - x} + \sqrt{x}}dx .....................\left[\text{Using, }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]
\[ \Rightarrow I = \int_0^a \frac{\sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}}dx .......................(2)\]
\[\text{Adding (1) and } (2)\]
\[2I = \int_0^a \frac{\sqrt{x} + \sqrt{a - x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[ = \int_0^a dx = \left[ x \right]_0^a = a\]
\[Hence\ I = \frac{a}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^(pi4) sec^4x "d"x` = ______.