Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_\frac{- \pi}{2}^\frac{\pi}{2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} d x\]
\[Since\, f\left( - x \right) = \sin \left| - x \right| + \cos \left| - x \right| = \sin \left| x \right| + \cos \left| x \right| = f\left( x \right)\]
\[So, f\left( x \right) \text{is an even function} . \]
\[ \therefore I = 2 \int_0^\frac{\pi}{2} \left( \sin x + \cos x \right) dx\]
\[ \Rightarrow I = 2 \left[ - \cos x + \sin x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 2\left( 0 + 1 + 1 - 0 \right)\]
\[ \Rightarrow I = 4\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`