Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I} =\int_0^\pi x\sin x \cos^2 xdx .....................(1)\]
Then,
\[I = \int_0^\pi \left( \pi - x \right)\sin\left( \pi - x \right) \cos^2 \left( \pi - x \right)dx ..................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_0^\pi \left( \pi - x \right)\sin x \cos^2 xdx .................(2)\]
Adding (1) and (2), we have
\[2I = \int_0^\pi \left( \pi - x + x \right)\sin x \cos^2 xdx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \sin x \cos^2 xdx\]
\[ \Rightarrow 2I = - \pi \int_0^\pi \cos^2 x\left( - \sin x \right)dx\]
\[ \Rightarrow 2I = \left.- \pi \times \frac{\cos^3 x}{3}\right|_0^\pi .................\left[ \int \left[ f\left( x \right) \right]^n f'\left( x \right)dx = \frac{\left[ f\left( x \right) \right]^{n + 1}}{n + 1} + C \right]\]
\[ \Rightarrow 2I = - \frac{\pi}{3}\left( \cos^3 \pi - \cos^2 0 \right)\]
\[\Rightarrow 2I = - \frac{\pi}{3}\left( - 1 - 1 \right) = \frac{2\pi}{3}\]
\[ \Rightarrow I = \frac{\pi}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Evaluate: `int x/(x^2 + 1)"d"x`