Advertisements
Advertisements
प्रश्न
Evaluate: `int x/(x^2 + 1)"d"x`
विकल्प
2log(x2 + 1) + c
`1/2`log(x2 + 1) + c
`"e"^(x^2 + 1) + "c"`
`logx + x^2/2 + "c"`
उत्तर
`bb(1/2log(x^2 + 1) + c)`
Explanation:
`int x/(x^2 + 1)"d"x`
= `1/2 int "dt"/"t"`
= `1/2 log "t" + "C"`
= `1/2 log (x^2 + 1) + "C"`
Put x2 + 1 = t
2x dx = dt
x dx = `"dt"/2` ...(i)
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
find `∫_2^4 x/(x^2 + 1)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
`int_0^1 x^2e^x dx` = ______.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.