Advertisements
Advertisements
प्रश्न
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.
विकल्प
4
– 4
`1/4`
`(-1)/4`
उत्तर
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is `underlinebb((-1)/4)`.
Explanation:
Curve y2 = 2x3 – 7
Differentiate w.r.t. to 'x'
`2y dy/dx` = 2 × 3x2 – 0
`dy/dx = (3x^2)/y`
`\implies (dy/dx)_((2"," 3)) = (3 xx 2^2)/3` = 4
∵ Slope of normal = `(-1)/(dy/dx)_((2"," 3))`
= `(-1)/4`
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
The curve y = `x^(1/5)` has at (0, 0) ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
At (0, 0) the curve y = x3 + x
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3