Advertisements
Advertisements
प्रश्न
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
उत्तर
\[ x^2 = 4y . . . \left( 1 \right)\]
\[4y + x^2 = 8 . . . \left( 2 \right)\]
\[\text { Given point is }\left( 2, 1 \right)\]
\[\text { Differentiating (1) w.r.t.x,}\]
\[2x = 4\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x}{2}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 2, 1 \right) = \frac{2}{2} = 1\]
\[\text { Differentiating (2) w.r.t.x,}\]
\[4\frac{dy}{dx} + 2x = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- x}{2}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 2, 1 \right) = \frac{- 2}{2} = - 1\]
\[\text { Since, } m_1 \times m_2 = - 1\]
Hence, the given curves intersect orthogonally at the given point.
APPEARS IN
संबंधित प्रश्न
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.