Advertisements
Advertisements
प्रश्न
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
उत्तर
The equation of the given curve is
y2=ax3+b .....(1)
Differentiate equation (1) with respect to x, we get
`2y dy/dx=3ax^2`
`dy/dx=(3ax^2)/(2y) `
`(dy/dx)_(2,3)=((3ax^2)/(2y))_(2,3)`
`=> (dy/dx)_(2,3)=2a`
So, equation of tangent at the point (2, 3) is
(y-3)=2a(x-2)
⇒y=2ax−4a+3 .....(2)
But according to question,
Equation of tangent at the point (2,3) is y=4x−5
Both the equation represents the same line, therefore comparing the coefficients of both the line, we have
2a=4⇒a=2 and 3−4a=−5⇒a=2 .....(3)
The point (2, 3) lies on the curve y2=ax3+b, so
(3)2=a(2)3+b
⇒9=8a+b
⇒9=8×2+b [From (3)]
⇒b=−7
Hence, the values of a and b are 2 and −7, respectively.
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
Find the angle of intersection of the curves y2 = x and x2 = y.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
At (0, 0) the curve y = x3 + x
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3