हिंदी

If the Curve Ay + X2 = 7 and X3 = Y Cut Orthogonally at (1, 1), Then a is Equal to (A) 1 (B) −6 (C) 6 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .

विकल्प

  • 1

  • `-6`

  • 6

  • 0

MCQ

उत्तर

`6`

 

\[\text { Given }: \]

\[ay + x^2 = 7 . . . \left( 1 \right)\]

\[ x^3 = y . . . \left( 2 \right)\]

\[\text { Point }=\left( 1, 1 \right)\]

\[\text { On differentiating (1) w.r.t.x, we get }\]

\[a\frac{dy}{dx} + 2x = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- 2x}{a}\]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = \frac{- 2}{a}\]

\[\text { Again, on differentiating (2) w.r.t.x, we get }\]

\[3 x^2 = \frac{dy}{dx}\]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = 3\]

\[\text { It is giventhat the curves are orthogonal at the given point }.\]

\[ \therefore m_1 \times m_2 = - 1\]

\[ \Rightarrow \frac{- 2}{a} \times 3 = - 1\]

\[ \Rightarrow a = 6\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.5 | Q 15 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×