हिंदी

Find the Angle of Intersection of the Following Curve Y2 = X and X2 = Y ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle of intersection of the following curve y2 = x and x2 = y  ?

उत्तर

\[\text { Given curves are },\]

\[ y^2 = x . . . \left( 1 \right)\]

\[ x^2 = y . . . \left( 2 \right)\]

\[\text { From these two equations, we get }\]

\[ \left( x^2 \right)^2 = x\]

\[ \Rightarrow x^4 - x = 0\]

\[ \Rightarrow x \left( x^3 - 1 \right) = 0\]

\[ \Rightarrow x = 0 orx= 1\]

\[\text { Substituting the values of x in } \left( 2 \right) \text { we get }, \]

\[y = 0 ory = 1 \]

\[ \therefore \left( x, y \right)=\left( 0, 0 \right) or \left( 1, 1 \right)\]

\[\text { Differenntiating (1) w.r.t.x},\]

\[2y \frac{dy}{dx} = 1\] 

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2y} . . . \left( 3 \right)\]

\[\text { Differenntiating(2) w.r.t.x },\]

\[2x = \frac{dy}{dx} . . . \left( 4 \right)\]

\[Case -1: \left( x, y \right)=\left( 0, 0 \right)\]

\[\text { The tangent to curve is parallel to x - axis } . \]

\[\text { Hence, the angle between the tangents to two curve at } \left( 0, 0 \right) \text { is a right angle} . \]

\[ \therefore \theta = \frac{\pi}{2}\]

\[\text { Case }-2: \left( x, y \right)=\left( 1, 1 \right)\]

\[\text { From } \left( 3 \right) \text { we have }, m_1 = \frac{1}{2}\]

\[\text { From } \left( 4 \right) \text { we have }, m_2 = 2 \left( 1 \right) = 2\]

\[\text { Now,} \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{1}{2} - 2}{1 + \frac{1}{2} \times 2} \right| = \frac{3}{4}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{3}{4} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.3 | Q 1.1 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The curve y = `x^(1/5)` has at (0, 0) ______.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Let `y = f(x)` be the equation of the curve, then equation of normal is


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×