Advertisements
Advertisements
प्रश्न
Find the angle of intersection of the following curve y2 = x and x2 = y ?
उत्तर
\[\text { Given curves are },\]
\[ y^2 = x . . . \left( 1 \right)\]
\[ x^2 = y . . . \left( 2 \right)\]
\[\text { From these two equations, we get }\]
\[ \left( x^2 \right)^2 = x\]
\[ \Rightarrow x^4 - x = 0\]
\[ \Rightarrow x \left( x^3 - 1 \right) = 0\]
\[ \Rightarrow x = 0 orx= 1\]
\[\text { Substituting the values of x in } \left( 2 \right) \text { we get }, \]
\[y = 0 ory = 1 \]
\[ \therefore \left( x, y \right)=\left( 0, 0 \right) or \left( 1, 1 \right)\]
\[\text { Differenntiating (1) w.r.t.x},\]
\[2y \frac{dy}{dx} = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2y} . . . \left( 3 \right)\]
\[\text { Differenntiating(2) w.r.t.x },\]
\[2x = \frac{dy}{dx} . . . \left( 4 \right)\]
\[Case -1: \left( x, y \right)=\left( 0, 0 \right)\]
\[\text { The tangent to curve is parallel to x - axis } . \]
\[\text { Hence, the angle between the tangents to two curve at } \left( 0, 0 \right) \text { is a right angle} . \]
\[ \therefore \theta = \frac{\pi}{2}\]
\[\text { Case }-2: \left( x, y \right)=\left( 1, 1 \right)\]
\[\text { From } \left( 3 \right) \text { we have }, m_1 = \frac{1}{2}\]
\[\text { From } \left( 4 \right) \text { we have }, m_2 = 2 \left( 1 \right) = 2\]
\[\text { Now,} \]
\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{1}{2} - 2}{1 + \frac{1}{2} \times 2} \right| = \frac{3}{4}\]
\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{3}{4} \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The curve y = `x^(1/5)` has at (0, 0) ______.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Let `y = f(x)` be the equation of the curve, then equation of normal is
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.