Advertisements
Advertisements
प्रश्न
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
उत्तर
The equation of the given curve is `y=x^2-2x+7`
On differentiating with respect `x,` we get:
`(dy)/(dx)=2x-2`
The equation of the line is 5y - 15x = 13
`5y-15x=13`
`rArr5y=15x+13`
`rArr(5y)/5=(15x)/5+13/5` .....................[dividing both the sides by 5]
`rArry=3x+13/5`
This is of the form y = mx + c
`therefore" slope of the line = 3"`
If a tangent is perpendicular to the line 5y - 15x = 13, then the slope of the tangent is `(-1)/("slope of the line")=(-1)/3`
`rArr2x-2=(-1)/3`
`rArr2x=(-1)/3+2`
`rArr2x=(-1+6)/3`
`rArr2x=5/3`
`rArrx=5/(3xx2)`
`rArrx=5/6`
Now, `x = 5/6`
`rArry=x^2-2x+7`
`rArry=(5/6)^2-2(5/6)+7`
`rArry=25/36-10/6+7`
`rArry=25/36-60/36+252/36`
`rArry=(25-60+252)/36=217/36`
Thus, the equation of the tangent passing through `(5/6, 217/36)`
`y-y_1=m(x-x_1)`
`rArry-217/36=-1/3(x-5/6)`
`rArr(36y-217)/36=-1/18(6x-5)`
`rArr36y-217=-2(6x-5)`
`rArr36y-217=-12x+10`
`rArr36y+12x-217-10=0`
`rArr36y+12x-227=0`
Hence, the equation of the tangent line to the given curve (which is perpendicular to line 5y - 15x = 13) is 36y + 12x - 227 = 0
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.