हिंदी

Find the Points on the Curve X 2 9 + Y 2 16 = 1 at Which the Tangent is Parallel to X-axis ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?

योग

उत्तर

The slope of the x-axis is 0.
Now, let (x1, y1) be the required point.

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence,} \frac{{x_1}^2}{9} + \frac{{y_1}^2}{16} = 1 . . . \left( 1 \right)\]

\[\text { Now,} \]

\[\frac{x^2}{9} + \frac{y^2}{16} = 1 \]

\[ \Rightarrow \frac{2x}{9} + \frac{2y}{16}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{y}{16}\frac{dy}{dx} = \frac{- x}{9}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- 16x}{9y}\]

\[\text { Now,} \]

\[\text { Slope of the tangent at }\left( x, y \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- 16 x_1}{9 y_1}\]

\[\text { Slope of the tangent at }\left( x, y \right)=\text {  Slope of the x-axis  [Given]}\]

\[ \therefore \frac{- 16 x_1}{9 y_1} = 0\]

\[ \Rightarrow x_1 = 0\]

\[0 + \frac{{y_1}^2}{16} = 1 [\text { From eq.} (1)]\]

\[\text { Also,} \]

\[ {y_1}^2 = 16\]

\[ y_1 = \pm 4\]

\[\text { Thus, the required points are }\left( 0, 4 \right)\text { and }\left( 0, - 4 \right).\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.1 | Q 19.1 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


The equation of the normal to the curve y = sinx at (0, 0) is ______.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The curve y = `x^(1/5)` has at (0, 0) ______.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×