Advertisements
Advertisements
प्रश्न
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
उत्तर
The equation of given curve is `y=x^2-2x+7`
On differentiating with respect to `x,` we get:
`(dy)/(dx)=2x-2`
The equation of the line is 2x - y + 9 = 0
`rArry=2x+9`
This is of the form `y=mx+c`
`therefore "slope of the line = 2"`
If a tangent is parallel to the line 2x - y + 9 = 0, then the slope of the tangent is equal to the slope of the line.
Therefore, We have
2 = 2x - 2
2x = 4
x = 2
Now, x = 2
`y=x^2-2x+7`
`rArry=4-4+7`
Thus, the equation of the tangent passing through (2, 7) is given by,
`y-y_1=m(x-x_1)`
y - 7 = 2(x - 2)
`rArry-2x-3 = 0`
Hence, the equation of the tangent line to the given curve (which is parallel to line 2x - y + 9 = 0) is y - 2x - 3 = 0.
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.