Advertisements
Advertisements
प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
उत्तर
Given:
x=3 cost−cos3t
y=3 sint−sin3t
Slope of the tangent, `dy/dx=(dy/dt)/(dx/dt)=(3cost-3sin^2tcost)/(-3sint+3cos^2tsint)`
`=(3cost[cos^2t])/(-3sint[sin^2t])`
`dy/dx=(-cos^3t)/sin^3t`
∴Slope of the normal
`=sin^3t/cos^3 t`
The equation of the normal is given by
`(y-(3sint-sin^3t))/(x-(3cost-cos^3t))=sin^3t/cos^3t`
`=>ycos^3t-3sint cos^3t +sin^3tcos^3t=xsin^3t-3costsin^3t+sin^3tcos^3t`
`=>ycos^3t-xsin^3t=3(sintcos^3t-costsin^3t)`
`=>ycos^3t-xsin^3t=3sintcost(cos^2t-sin^2t)`
`=>ycos^3t-xsin^3t=3/2sin2tcos2t=3/4sin4t`
`=>4(ycos^3t-xsin^3t)=3sin4t`
Hence proved.
संबंधित प्रश्न
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
Let `y = f(x)` be the equation of the curve, then equation of normal is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.