हिंदी

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t

उत्तर

 

Given:
x=3 costcos3t

y=3 sintsin3t

Slope of the tangent`dy/dx=(dy/dt)/(dx/dt)=(3cost-3sin^2tcost)/(-3sint+3cos^2tsint)`

`=(3cost[cos^2t])/(-3sint[sin^2t])`

`dy/dx=(-cos^3t)/sin^3t`

Slope of the normal 

`=sin^3t/cos^3 t`

The equation of the normal is given by

`(y-(3sint-sin^3t))/(x-(3cost-cos^3t))=sin^3t/cos^3t`

`=>ycos^3t-3sint cos^3t +sin^3tcos^3t=xsin^3t-3costsin^3t+sin^3tcos^3t`

`=>ycos^3t-xsin^3t=3(sintcos^3t-costsin^3t)`

`=>ycos^3t-xsin^3t=3sintcost(cos^2t-sin^2t)`

`=>ycos^3t-xsin^3t=3/2sin2tcos2t=3/4sin4t`

`=>4(ycos^3t-xsin^3t)=3sin4t`

Hence proved.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Delhi Set 2

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Let `y = f(x)` be the equation of the curve, then equation of normal is


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×