Advertisements
Advertisements
प्रश्न
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
उत्तर
\[\text { Given:} \]
\[xy + ax + by = 2 . . . \left( 1 \right)\]
\[\text { On differentiating both sides w.r.t. x, we get }\]
\[x\frac{dy}{dx} + y + a + b\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx}\left( x + b \right) = - a - y\]
\[ \Rightarrow \frac{dy}{dx}=\frac{- a - y}{x + b}\]
\[\text { Now,} \]
\[ \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = 2\]
\[ \Rightarrow \frac{- a - 1}{1 + b} = 2\]
\[ \Rightarrow - a - 1 = 2 + 2b\]
\[ \Rightarrow - a = 3 + 2b\]
\[ \Rightarrow a = - \left( 3 + 2b \right)\]
\[\text { On substituting } a= - \left( 3 + 2b \right), x=1 \text { and y = 1 in eq. }(1), \text { we get }\]
\[1 - \left( 3 + 2b \right) + b = 2\]
\[ \Rightarrow 1 - 3 - 2b + b = 2\]
\[ \Rightarrow b = - 4\]
\[\text { and }\]
\[a = - \left( 3 + 2b \right) = - \left( 3 - 8 \right) = 5\]
\[ \therefore a = 5 \text { and }b = - 4\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
Which of the following represent the slope of normal?