हिंदी

Find the Values of a and B If the Slope of the Tangent to the Curve Xy + Ax + by = 2 at (1, 1) is 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?

योग

उत्तर

\[\text { Given:} \]

\[xy + ax + by = 2 . . . \left( 1 \right)\]

\[\text { On differentiating both sides w.r.t. x, we get }\]

\[x\frac{dy}{dx} + y + a + b\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx}\left( x + b \right) = - a - y\]

\[ \Rightarrow \frac{dy}{dx}=\frac{- a - y}{x + b}\]

\[\text { Now,} \]

\[ \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = 2\]

\[ \Rightarrow \frac{- a - 1}{1 + b} = 2\]

\[ \Rightarrow - a - 1 = 2 + 2b\]

\[ \Rightarrow - a = 3 + 2b\]

\[ \Rightarrow a = - \left( 3 + 2b \right)\]

\[\text { On substituting } a= - \left( 3 + 2b \right), x=1 \text { and y = 1 in eq. }(1), \text { we get }\]

\[1 - \left( 3 + 2b \right) + b = 2\]

\[ \Rightarrow 1 - 3 - 2b + b = 2\]

\[ \Rightarrow b = - 4\]

\[\text { and }\]

\[a = - \left( 3 + 2b \right) = - \left( 3 - 8 \right) = 5\]

\[ \therefore a = 5 \text { and }b = - 4\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.1 | Q 2 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to x-axis ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


The equation of normal to the curve y = tanx at (0, 0) is ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Which of the following represent the slope of normal?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×