हिंदी

If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.

विकल्प

  • 1

  • 0

  • – 6

  • 6

MCQ
रिक्त स्थान भरें

उत्तर

If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is 6.

Explanation:

Equation of the given curves are ay + x2 = 7  .....(i)

And x3 = y  .....(ii)

Differentiating eq. (i) w.r.t. x, we have

`"a" "dy"/"dx" + 2x` = 0

⇒ `"dy"/"dx" = - (2x)/"a"`

∴ m1 = `- (2x)/"a"` ......`("m"_1 = "dy"/"dx")`

Now differentiating eq. (ii) w.r.t. x, we get

3x2 = `"dy"/"dx"`

⇒ m2 = `3x^2`  .....`("m"_2 = "dy"/"dx")`

The two curves are said to be orthogonal if the angle between the tangents at the point of intersection is 90°.

∴ m1 × m2 = – 1

⇒ `(-2x)/"a" xx 3x^2` = – 1

⇒ `(-6x^3)/"a"` = – 1

⇒ 6x3 = a

(1, 1) is the point of intersection of two curves.

∴ 6(1)3 = a

So a = 6

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 39 | पृष्ठ १३९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


Let `y = f(x)` be the equation of the curve, then equation of normal is


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×