Advertisements
Advertisements
प्रश्न
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
विकल्प
1
0
– 6
6
उत्तर
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is 6.
Explanation:
Equation of the given curves are ay + x2 = 7 .....(i)
And x3 = y .....(ii)
Differentiating eq. (i) w.r.t. x, we have
`"a" "dy"/"dx" + 2x` = 0
⇒ `"dy"/"dx" = - (2x)/"a"`
∴ m1 = `- (2x)/"a"` ......`("m"_1 = "dy"/"dx")`
Now differentiating eq. (ii) w.r.t. x, we get
3x2 = `"dy"/"dx"`
⇒ m2 = `3x^2` .....`("m"_2 = "dy"/"dx")`
The two curves are said to be orthogonal if the angle between the tangents at the point of intersection is 90°.
∴ m1 × m2 = – 1
⇒ `(-2x)/"a" xx 3x^2` = – 1
⇒ `(-6x^3)/"a"` = – 1
⇒ 6x3 = a
(1, 1) is the point of intersection of two curves.
∴ 6(1)3 = a
So a = 6
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Let `y = f(x)` be the equation of the curve, then equation of normal is
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.