Advertisements
Advertisements
प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
उत्तर
Equations of the given circles are
`x^2+y^2=4 ................(1)`
`(x-2)^2+y^2=4...........(2)`
Equation (1) is a circle with centre O at the origin and radius 2. Equation (2) is a circle with centre C (2, 0) and radius 2. Solving equations (1) and (2), we have
`(x-2)^2+y^2=x^2+y^2`
`or x^2-4x+4+y^2=x^2+y^2`
or x=1 which gives `y=+-sqrt3`
Thus, the points of intersection of the given circles are `A(1,sqrt3) and A'(1,-sqrt3) ` as shown in the Figure
Required area of the enclosed region OACA′O between circles
= 2 [area of the region ODCAO]
= 2 [area of the region ODAO + area of the region DCAD]
`=2[int_0^1ydx+int_1^2ydx]`
`=2[int_0^1sqrt(4-(x-2)^2)dx+int_1^2sqrt(4-x^2)dx]`
`=2[1/2(x-2)sqrt(4-(x-2)^2)+1/2xx4sin^(-1)((x-2)/2)]_0^1+2[1/2xsqrt(4-x^2)+1/2xx4sin^(-1)(x/2)]_1^2`
`=[(x-2)sqrt(4-(x-2)^2)+4sin^(-1)((x-2)2)]_0^1+[xsqrt(4-x^2)+4sin^(-1)(x/2)]_1^2`
`=[(-sqrt3+4sin^(-1)(-1/2))-4sin^(-1)(-1)]+[4sin^(-1)1-sqrt3-4sin^(-1)(1/2)]`
`=[(-sqrt3-4xxpi/6)+4xxpi/2]+[4xxpi/2-sqrt3-4xxpi/6]`
`=(8pi)/3-2sqrt3`
APPEARS IN
संबंधित प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
Find the angle of intersection of the curves y2 = x and x2 = y.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.