हिंदी

Using integration, find the area bounded by the curve x^2 = 4y and the line x = 4y − 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.

उत्तर

The area bounded by the curve, x2 = 4y, and line, x = 4y − 2, is represented by the shaded area OBAO.

Let A and B be the points of intersection of the line and parabola.

Coordinates of point A are (-1, 1/4).

Coordinates of point B are (2, 1).

We draw AL and BM perpendicular to x-axis.

It can be observed that,

Area OBAO = Area OBCO + Area OACO … (1)

Then, Area OBCO = Area OMBC − Area OMBO

`=int_0^2(x+2)/4dx-int_0^2x^2/4dx`

`=1/4[x^2/2+2x]_0^2-1/4[x^3/3]_0^2`

`=-1/4[(-1)^2/2+2(-1)]-[1/4((-1)^3/3)]`

`=7/24`

Therefore, required area = `(5/6+7/24)=9/8 units`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2012-2013 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×