Advertisements
Advertisements
प्रश्न
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
उत्तर
Points of intersection of the parabola and the circle is obtained by solving the simultaneous equations
\[x^2 + y^2 = 16 a^2\text{ and }y^2 = 6ax\]
\[ \Rightarrow x^2 + 6ax = 16 a^2 \]
\[ \Rightarrow x^2 + 6ax - 16 a^2 = 0\]
\[ \Rightarrow \left( x + 8a \right)\left( x - 2a \right) = 0\]
\[ \Rightarrow x = 2a\text{ or }x = - 8a , x = - 8a\text{ is not the possible solution . }\]
\[ \therefore\text{ When }x = 2a, y = \pm \sqrt{6a \times 2a} = \pm \sqrt{12}a = \pm 2\sqrt{3}a\]
\[ \therefore B\left( 2a , 2\sqrt{3a} \right)\text{ and }B'\left( 2a , - 2\sqrt{3}a \right)\text{ are points of intersection of the parabola and circle . }\]
\[\text{ Now, Required area = area }\left( OBAB'O \right) \]
\[ = 2 \times\text{ area }\left( OBAO \right)\]
\[ = 2\left\{ \text{ area }\left( OBDO \right) +\text{ area }\left( DBAD \right) \right\}\]
\[ = 2 \times \left[ \int_0^{2a} \sqrt{6ax}dx + \int_{2a}^{4a} \sqrt{16 a^2 - x^2} dx \right]\]
\[ = 2 \times \left\{ \left[ \sqrt{6a}\frac{x^\frac{3}{2}}{\frac{3}{2}} \right]_0^{2a} + \left[ \frac{1}{2}x\sqrt{16 a^2 - x^2} + \frac{1}{2} \times 16 a^2 \sin^{- 1} \left( \frac{x}{4a} \right) \right]_{2a}^{4a} \right\}\]
\[ = 2 \times \left\{ \left( \sqrt{6a} \times \frac{2}{3} \times \left( 2a \right)^\frac{3}{2} - 0 \right) + \left( \frac{1}{2} \times 4a\sqrt{16 a^2 - \left( 4a \right)^2} + \frac{1}{2} \times 16 a^2 \sin^{- 1} \frac{4a}{4a} - \frac{1}{2} \times 2a\sqrt{16 a^2 - \left( 2a \right)^2} - \frac{1}{2} \times 16 a^2 \sin^{- 1} \frac{2a}{4a} \right) \right\}\]
\[ = 2 \times \left\{ \left( \sqrt{6a} \times \frac{2}{3} \times 2a\sqrt{2a} \right) + 0 + 8 a^2 \sin^{- 1} \left( 1 \right) - 2\sqrt{3} a^2 - 8a \sin^{- 1} \left( \frac{1}{2} \right) \right\}\]
\[ = 2 \times \left[ \frac{8 a^2 \sqrt{3}}{3} + 8 a^2 \times \frac{\pi}{2} - 2\sqrt{3} a^2 - 8 a^2 \frac{\pi}{6} \right]\]
\[ = 2 \left\{ \left( \frac{8\sqrt{3} - 6\sqrt{3}}{3} \right) a^2 + 8\left( \frac{\pi}{2} - \frac{\pi}{6} \right) a^2 \right\}\]
\[ = 2\left\{ \frac{2\sqrt{3}}{3} a^2 + 8 a^2 \left( \frac{2\pi}{6} \right) \right\}\]
\[ = \frac{4\sqrt{3}}{3} a^2 + \frac{16\pi}{3} a^2 \]
\[ = \frac{4 a^2}{3}\left( 4\pi + \sqrt{3} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\] and evaluate the area of the region under the curve and above the x-axis.
Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
The area bounded by the curve y = 4x − x2 and the x-axis is __________ .
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
The area enclosed by the circle x2 + y2 = 2 is equal to ______.
Find the area of the region bounded by y = `sqrt(x)` and y = x.
Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.
The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`
Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is
The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.