Advertisements
Advertisements
प्रश्न
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.
उत्तर
To find the points of intersection between the parabola and the line let us substitute y = 2x − 4 in y2 = 4x.
\[\left( 2x - 4 \right)^2 = 4x\]
\[ \Rightarrow 4 x^2 + 16 - 16x = 4x\]
\[ \Rightarrow 4 x^2 - 20x + 16 = 0\]
\[ \Rightarrow x^2 - 5x + 4 = 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 4 \right) = 0\]
\[ \Rightarrow x = 1, 4\]
\[\Rightarrow y = - 2, 4\]
Therefore, the points of intersection are C(1, −2) and A(4, 4).
Using Horizontal Strips:-
The area of the required region ABCD
\[A = \int_{- 2}^4 \left( x_1 - x_2 \right) dy ...........\left(\text{where,} x_1 = \frac{y + 4}{2}\text{ and }x_2 = \frac{y^2}{4} \right)\]
\[ = \int_{- 2}^4 \left[ \left( \frac{y + 4}{2} \right) - \left( \frac{y^2}{4} \right) \right] d y\]
\[ = \left[ \frac{y^2}{4} + 2y - \frac{y^3}{12} \right]_{- 2}^4 \]
\[ = \left( \frac{4^2}{4} + 2 \times 4 - \frac{4^3}{12} \right) - \left[ \frac{\left( - 2 \right)^2}{4} + 2\left( - 2 \right) - \frac{\left( - 2 \right)^3}{12} \right]\]
\[ = \left( 4 + 8 - \frac{16}{3} \right) - \left[ 1 - 4 + \frac{2}{3} \right]\]
\[ = 12 - \frac{16}{3} + 3 - \frac{2}{3}\]
\[ = 15 - \frac{18}{3}\]
\[ = 15 - \frac{18}{3}\]
\[ = 15 - 6 = 9\text{ sq . units }\]
APPEARS IN
संबंधित प्रश्न
Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\] are in the ratio 2 : 3.
Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.
The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.
Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.
The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.
Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.