हिंदी

Find the Area of the Region in the First Quadrant Enclosed by X-axis, the Line Y = √ 3 X and the Circle X2 + Y2 = 16. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.

योग

उत्तर

\[x^2 + y^2 = 16\]  represents a circle with centre O(0,0) and cutting the x axis at A(4,0) \[y = \sqrt{3} x\] represents straight passing through O(0,0)
Point of intersection is obtained by solving the two equations
\[x^2 + y^2 = 16\text{ and }y = \sqrt{3} x \]
\[ \Rightarrow x^2 + \left( \sqrt{3} x \right)^2 = 16\]
\[ \Rightarrow 4 x^2 = 16 \]
\[ \Rightarrow x = \pm 2\]
\[ \Rightarrow y = \pm 2\sqrt{3}\]
\[B\left( 2 , 2\sqrt{3} \right)\text{ and }B'\left( - 2 , - 2\sqrt{3} \right) \text{ are points of intersection of circle and straight line }\]
\[\text{ Shaded area }\left( OBQAO \right) =\text{ area }\left( OBPO \right) +\text{ area }\left( PBQAP \right)\]
\[ = \int_0^2 \sqrt{3} x dx + \int_2^4 \sqrt{16 - x^2} dx\]
\[ = \sqrt{3} \left[ \frac{x^2}{2} \right]_0^2 + \left[ \frac{1}{2}x\sqrt{16 - x^2} + \frac{16}{2} \sin^{- 1} \left( \frac{x}{4} \right) \right]_2^4 \]
\[ = 2\sqrt{3} + 8 \times \frac{\pi}{2} - 2\sqrt{3} - 8 \times \frac{\pi}{6}\]
\[ = 2\sqrt{3} + 4\pi - 2\sqrt{3} - \frac{4\pi}{3}\]
\[ = \frac{8\pi}{3}\text{ sq units }\]
\[\text{ Area bound by the circle and straight line above }x\text{ axis }= 2\sqrt{3} + \left( - 2\sqrt{3} + 8 \times \frac{2\pi}{6} \right) = \frac{8\pi}{3}\text{ sq units }\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
Exercise 21.3 | Q 25 | पृष्ठ ५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


The area bounded by the curve y = 4x − x2 and the x-axis is __________ .


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of the region bounded by y = `sqrt(x)` and y = x.


Find the area bounded by the curve y = sinx between x = 0 and x = 2π.


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


The curve x = t2 + t + 1,y = t2 – t + 1 represents


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Evaluate:

`int_0^1x^2dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×