Advertisements
Advertisements
प्रश्न
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
उत्तर
\[\text{ Let R }= \left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
\[ R_1 = \left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \right\}\]
\[\text{ and }R_2 = \left\{ \left( x, y \right) : 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
\[ \therefore R = R_{1 \cap} R_2 \]
\[\frac{x^2}{9} + \frac{y^2}{4} = 1\text{ represents an ellipse, with centre at O(0, 0) , cutting the coordinate axis at A }\left( 3, 0 \right), A'\left( - 3, 0 \right), B\left( 0, 2 \right)text{ and B' }\left( 0, - 2 \right)\]
\[\text{ Hence, } R_1\text{ is area interior to the ellipse }\]
\[\frac{x}{3} + \frac{y}{2} = 1\]
\[ \Rightarrow 2x + 3y = 6 \text{ represents a straight line cutting the coordinate axis at A }\left( 3, 0 \right)\text{ and }B\left( 0, 2 \right)\]
\[\text{ Hence, }R_2 \text{will be area above the line }\]
\[ \Rightarrow A\left( 3, 0 \right)\text{ and B }\left( 0, 2 \right) \text{ are points of intersection of ellipse and straight line .} \]
Area of shaded region,
\[A = \int_0^3 \left[ \sqrt{4\left( 1 - \frac{x^2}{9} \right)} - 2\left( 1 - \frac{x}{3} \right) \right] dx\]
\[ = \int_0^3 \left[ \sqrt{\frac{36 - 4 x^2}{9}} - \left( \frac{6 - 2x}{3} \right) \right]dx\]
\[ = \frac{1}{3} \int_0^3 \left[ 2\sqrt{9 - x^2} - \left( 6 - 2x \right) \right] dx\]
\[ = \frac{1}{3} \left[ 2 \times \left\{ \frac{1}{2}x\sqrt{9 - x^2} + \frac{1}{2} \times 9 \sin^{- 1} \left( \frac{x}{3} \right) \right\} - \left( 6x - 2\frac{x^2}{2} \right) \right]_0^3 \]
\[ = \frac{1}{3} \left[ x\sqrt{9 - x^2} + 9 \sin^{- 1} \left( \frac{x}{3} \right) - 6x + x^2 \right]_0^3 \]
\[ = \frac{1}{3}\left[ 0 + 9 \sin^{- 1} \left( 1 \right) - 18 + 9 - 0 \right] \]
\[ = \frac{1}{3}\left[ 9\frac{\pi}{2} - 9 \right]\]
\[ = \left( \frac{3\pi}{2} - 3 \right)\text{ sq units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.
triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.
Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.
Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5
Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.
Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The area bounded by the curve y = 4x − x2 and the x-axis is __________ .
Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.
Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.
Evaluate:
`int_0^1x^2dx`