हिंदी

The Area Bounded by the Curve Y = 4x − X2 and the X-axis is - Mathematics

Advertisements
Advertisements

प्रश्न

The area bounded by the curve y = 4x − x2 and the x-axis is __________ .

विकल्प

  • \[\frac{30}{7}\]sq. units

  • \[\frac{31}{7}\]sq. units

  • \[\frac{32}{3}\]sq. units

  • \[\frac{34}{3}\]sq. units

MCQ

उत्तर

\[\frac{32}{3}\]sq. units

Point of intersection of parabola y = 4x − x2 with x-axis is given by 
\[y = 4x - x^2\text{ and }y = 0 ................\left(\text{Equation of x axis }\right)\]
\[ \Rightarrow 4x - x^2 = 0\]
\[ \Rightarrow x = 0\text{ or }x = 4 \]
\[ \Rightarrow y = 0 , y = 0\]
\[\text{ Thus O }\left( 0, 0 \right)\text{ and B }\left( 4, 0 \right) \text{ are points of intersection of parabola and x - axis . }\]
\[\text{ Required shaded area }= \int_0^4 \left( 4x - x^2 \right) dx\]
\[ = \left[ 2 x^2 - \frac{x^3}{3} \right]_0^4 \]
\[ = 2 \times 16 - \frac{64}{3} - 0\]
\[ = \frac{96 - 64}{3}\]
\[ = \frac{32}{3}\text{  square units }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Areas of Bounded Regions - MCQ [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 21 Areas of Bounded Regions
MCQ | Q 20 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Find the area under the curve y = \[\sqrt{6x + 4}\] above x-axis from x = 0 to x = 2. Draw a sketch of curve also.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is


Find the area bounded by the curve y = |x – 1| and y = 1, using integration.


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×