हिंदी

Sketch the Graph of Y = |X + 4|. Using Integration, Find the Area of the Region Bounded by the Curve Y = |X + 4| and X = –6 and X = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.

उत्तर

y = x + 4, if x > 4 and y = -(x+4), if x < 4

For y = x + 4

when x = 0, y= 4

and when y = 0, x = -4

Point are 

∴ (0,4) and (-4,0)

For y = -x - 4

when x = 0,  y = -4

when y = 0, x= -4

∴ Point are

(0, -4) and (-4,0)

∴ Required area

`= int_(-6)^(-4)-(x+4) dx + int_(-4)^0 (x + 4) dx`

`= -[x^2/2 + 4x]_(-6)^(-4) + [x^2/2 + 4x]_(-4)^0`

`= [(-4)^2/4 + 4(-4) - [(-6)^2/2 + 4(-6)]] + [0 + 0[(-4)^2/2 + 4(-4)]]`

`= -[16/2 - 16 -[36/2 - 24]] + [-(16/2 - 16)]`

= -[-8 + 6] + [8]

2 + 8 = 10 sq. unit

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.


Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.


Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is


Find the area of the curve y = sin x between 0 and π.


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


The area enclosed by the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 is equal to ______.


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×