Advertisements
Advertisements
प्रश्न
The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .
विकल्प
\[\frac{\pi}{5}\]
\[\frac{\pi}{4}\]
\[\frac{\pi}{2} - \frac{1}{2}\]
\[\frac{\pi^2}{2}\]
None of these
उत्तर
To find the points of intersection of the line and the circle substitute y = 1 − x in x2 + y2 = 1,we get A(0, 1) and B(1, 0).
Therefore, the required area of the shaded region,
\[A = \int_0^1 \left( y_1 - y_2 \right) d x ............\left(\text{Where, }y_1 = \sqrt{1 - x^2}\text{ and }y_2 = 1 - x \right)\]
\[ = \int_0^1 \left[ \left( \sqrt{1 - x^2} \right) - \left( 1 - x \right) \right] d x\]
\[ = = \int_0^1 \left( \sqrt{1 - x^2} - 1 + x \right) d x\]
\[ = \left[ \frac{x}{2}\sqrt{1 - x^2} + \frac{1}{2} \sin^{- 1} \left( x \right) - x + \frac{x^2}{2} \right]_0^1 \]
\[ = \left[ \frac{1}{2}\sqrt{1 - 1^2} + \frac{1}{2} \sin^{- 1} \left( 1 \right) - \left( 1 \right) + \frac{\left( 1 \right)^2}{2} \right] - \left[ \frac{\left( 0 \right)}{2}\sqrt{1 - \left( 0 \right)^2} + \frac{1}{2} \sin^{- 1} \left( 0 \right) - \left( 0 \right) + \frac{\left( 0 \right)^2}{2} \right]\]
\[ = \left( \frac{\pi}{4} - \frac{1}{2} \right)\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the area bounded by the curve y2 = 4ax, x-axis and the lines x = 0 and x = a.
Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.
Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.
Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them.
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
Find the area of the region bounded by the curves y2 = 9x, y = 3x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is
Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.
The area of the region bounded by the parabola (y – 2)2 = (x – 1), the tangent to it at the point whose ordinate is 3 and the x-axis is ______.
Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).
Find the area of the minor segment of the circle x2 + y2 = 4 cut off by the line x = 1, using integration.
Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.