हिंदी

Find the area bounded by the curve y^2 = 4ax, x-axis and the lines x = 0 and x = a. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.

उत्तर

Area bounded = `int_0^aydx`

`=int_0^asqrt(4ax)dx`

`=2sqrtaint_0^ax^(1/2)dx`

`=2sqrta[(x^(1/2+1))/(1/2+1)]_0^a`

`=2sqrtaxx2/3xxa^(3/2)`

`=4/3a^(1/2+3/2)`

`=4/3a^2`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region in the first quadrant bounded by the parabola y = 4x2 and the lines x = 0, y = 1 and y = 4.


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them. 


Find the area of the curve y = sin x between 0 and π.


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


The area of the region bounded by the curve x = y2, y-axis and the line y = 3 and y = 4 is ______.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×