हिंदी

Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.

आकृति
योग

उत्तर


Given equations are y = 1 + |x + 1|

x = –3 and x = 3

y = 0

Taking y = 1 + |x + 1|

⇒ y = 1 + x + 1

⇒ y = x + 2

And y = 1 – x – 1

⇒ y = –x

On solving we get x = –1

Area of the required regions = `int_(-3)^(-1) -x  "d"x + int_(-1)^3 (x + 2)  "d"x`

= `-[x^2/2]_-3^-1 + [x^2/2 + 2x]_1^3`

= `-[1/2 - 9/2] + [(9/2 + 6) - (1/2 - 2)]`

= `-(-4) + [21/2 + 3/2]`

= 4 + 12

= 16 sq.units

Hence, the required area = 16 sq.units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application Of Integrals - Exercise [पृष्ठ १७७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 8 Application Of Integrals
Exercise | Q 23 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.


Find the area of the region in the first quadrant enclosed by x-axis, the line y = \[\sqrt{3}x\] and the circle x2 + y2 = 16.


Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


If the area above the x-axis, bounded by the curves y = 2kx and x = 0, and x = 2 is \[\frac{3}{\log_e 2}\], then the value of k is __________ .


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is


The area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis, is 


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×