मराठी

Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.

आकृती
बेरीज

उत्तर


Given equations are y = 1 + |x + 1|

x = –3 and x = 3

y = 0

Taking y = 1 + |x + 1|

⇒ y = 1 + x + 1

⇒ y = x + 2

And y = 1 – x – 1

⇒ y = –x

On solving we get x = –1

Area of the required regions = `int_(-3)^(-1) -x  "d"x + int_(-1)^3 (x + 2)  "d"x`

= `-[x^2/2]_-3^-1 + [x^2/2 + 2x]_1^3`

= `-[1/2 - 9/2] + [(9/2 + 6) - (1/2 - 2)]`

= `-(-4) + [21/2 + 3/2]`

= 4 + 12

= 16 sq.units

Hence, the required area = 16 sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application Of Integrals - Exercise [पृष्ठ १७७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 8 Application Of Integrals
Exercise | Q 23 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Draw a rough sketch of the curve and find the area of the region bounded by curve y2 = 8x and the line x =2.


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×