Advertisements
Advertisements
प्रश्न
Find the area of the region included between the parabola y2 = x and the line x + y = 2.
Find the area enclosed by the parabola y2 = x and the line y + x = 2.
उत्तर १
We have,
\[y^2 = x\] and \[x + y = 2\]
To find the intersecting points of the curves ,we solve both the equations.
\[y^2 + y - 2 = 0\]
\[ \Rightarrow \left( y + 2 \right)\left( y - 1 \right) = 0\]
\[ \Rightarrow y = - 2\text{ or }y = 1\]
\[ \therefore x = 4 \text{ or }1\]
\[\text{ Consider a horizantal strip of length }\left| x_2 - x_1 \right|\text{ and width }dy\text{ where }P\left( x_2 , y \right)\text{ lies on straight line and Q}\left( x_1 , y \right)\text{ lies on the parabola }. \]
\[\text{ Area of approximating rectangle }= \left| x_2 - x_1 \right| dy ,\text{ and it moves from }y = - 2\text{ to }y = 1\]
\[\text{ Required area = area }\left(\text{ OADO }\right) = \int_{- 2}^1 \left| x_2 - x_1 \right| dy\]
\[ = \int_{- 2}^1 \left| x_2 - x_1 \right| dy .............\left\{ \because \left| x_2 - x_1 \right| = x_2 - x_1 as x_2 > x_1 \right\}\]
\[ = \int_{- 2}^1 \left\{ \left( 2 - y \right) - y^2 dy \right\}\]
\[ = \left[ 2y - \frac{y^2}{2} - \frac{y^3}{3} \right]_{- 2}^1 \]
\[ = \left[ 2 - \frac{1}{2} - \frac{1}{3} \right] - \left[ - 4 - 2 + \frac{8}{3} \right]\]
\[ = 2 - \frac{1}{2} - \frac{1}{3} + 6 - \frac{8}{3}\]
\[ = \frac{9}{2}\text{ sq units }\]
\[\text{ Area enclosed by the line and given parabola }= \frac{9}{2}\text{ sq units }\]
उत्तर २
y2 = x,
x + y = 2
i.e. x = 2 – y
Solving the equations:
y2 = 2 – y,
i.e. y2 + y – 2 = 0
i.e. (y + 2)(y – 1) = 0
∴ y = 1, – 2
∴ x = 1, 4 (respectively)
Points of intersection of parabola and line
= (1, 1) and (4, – 2)
Also the line cuts X-axis at (2, 0)
Area above X-axis
= `int_0^1 sqrt(x) dx + int_1^2(2 - x)dx`
= `2/3[x^(3/2)]_0^1 + [2x - x^2/2]_1^2`
= `2/3 + (4 - 2) - (2 - 1/2)`
= `2/3 + 2 - 3/2`
= `(4 + 12 - 9)/6`
= `7/6` ...(1)
Area below X-axis
= `|int_0^4 sqrt(x) dx| - |int_2^4(2 - x)dx|`
= `2/3[x^(3/2)]_0^4 - [2x - x^2/2]_2^4`
= `2/3(8) - |[(8 - 8) - (4 - 2)]|`
= `16/3 - |(-2)|`
= `16/3 - 2`
= `10/3` ...(2)
From (1) and (2)
Required area = `7/6 + 10/3`
= `(7 + 20)/6`
= `27/6`
= `9/2` sq. units
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.
Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.
Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.
Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =\[\frac{\pi}{3}\] are in the ratio 2 : 3.
Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.
Find the area of the region \[\left\{ \left( x, y \right): \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \leq \frac{x}{a} + \frac{y}{b} \right\}\]
Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.
Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .
The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .
Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).
Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.
Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.
The area of the region bounded by the curve y = x2 + x, x-axis and the line x = 2 and x = 5 is equal to ______.
Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.
The area of the region bounded by the circle x2 + y2 = 1 is ______.
The area of the region bounded by the line y = 4 and the curve y = x2 is ______.
Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.
The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by
The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.
Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.
Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.
Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.
Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.
Evaluate:
`int_0^1x^2dx`