मराठी

Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.

बेरीज

उत्तर

Solving the given equations of curves

We have x2 + ax = 2ax or x = 0, x = a

Which give y = 0.

y = ±a

From the figure in the question

Area ODAB = `int_0^"a" (sqrt(2"a"x - x^2) - sqrt("a"x))"d"x`

Let x = 2a sin2θ.

Then dx = 4a sinθ cosθ dθ and x = 0

⇒ θ = 0, x = a

⇒ θ = `pi/4`.

Again, `int_0"a" sqrt(2"a"x - x^2)  "d"x = int_0^(pi/4) (2"a" sintheta costheta)(4"a" sintheta costheta)"d"theta`

= `"a"^2 int_0^(pi/4) (1 - cos 4theta) "d"theta`

= `"a"^2(theta - (sin 4theta)/4)_0^(pi/4)`

= `pi/4 "a"^2`.

Further more,

`int_0^"a" sqrt("a"x)  "d"x = sqrt("a") 2/3 (x^(3/2))_0^"a"`

= `2/3 "a"^2`

Thus the required area = `pi/4 "a"^2 - 2/3 "a"^2`

= `"a"^2 (pi/4 - 2/3)` sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application Of Integrals - Solved Examples [पृष्ठ १७३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 8 Application Of Integrals
Solved Examples | Q 8 | पृष्ठ १७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.


Find the area of the minor segment of the circle \[x^2 + y^2 = a^2\] cut off by the line \[x = \frac{a}{2}\]


Find the area enclosed by the curve x = 3cost, y = 2sin t.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.


Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.


Using the method of integration, find the area of the region bounded by the following lines:
3x − y − 3 = 0, 2x + y − 12 = 0, x − 2y − 1 = 0.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×