Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.
उत्तर
The parabola y2 = 2x opens towards the positive x-axis and its focus is \[\left( \frac{1}{2}, 0 \right)\]
The straight line x − y = 4 passes through (4, 0) and (0, −4).
Solving y2 = 2x and x − y = 4, we get
\[y^2 = 2\left( y + 4 \right)\]
\[ \Rightarrow y^2 - 2y - 8 = 0\]
\[ \Rightarrow \left( y - 4 \right)\left( y + 2 \right) = 0\]
\[ \Rightarrow y = 4\text{ or }y = - 2\]
So, the points of intersection of the given parabola and the line are A(8, 4) and B(2, −2).
∴ Required area = Area of the shaded region OABO
\[= \int_{- 2}^4 x_{\text{ line }} dy - \int_{- 2}^4 x_{\text{ parabola }} dy\]
\[ = \int_{- 2}^4 \left( y + 4 \right)dy - \int_{- 2}^4 \frac{y^2}{2}dy\]
\[ = \left.\frac{\left( y + 4 \right)^2}{2}\right|_{- 2}^4 - \left.\frac{1}{2} \times \frac{y^3}{3}\right|_{- 2}^4 \]
\[ = \frac{1}{2}\left( 64 - 4 \right) - \frac{1}{6}\left[ 64 - \left( - 8 \right) \right]\]
\[ = 30 - 12\]
\[ = 18\text{ square units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x
Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Determine the area under the curve y = \[\sqrt{a^2 - x^2}\] included between the lines x = 0 and x = a.
Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?
Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.
Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Prove that the area in the first quadrant enclosed by the x-axis, the line x = \[\sqrt{3}y\] and the circle x2 + y2 = 4 is π/3.
Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Find the area of the region bounded by \[y = \sqrt{x}\] and y = x.
Find the area of the region bounded by the parabola y2 = 2x + 1 and the line x − y − 1 = 0.
Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.
Find the area enclosed by the curves 3x2 + 5y = 32 and y = | x − 2 |.
Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.
Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
The area of the region bounded by the curve y = x2 and the line y = 16 ______.
Find the area of the region bounded by the curves y2 = 9x, y = 3x
Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0
Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.
The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.
If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then
Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.
Area of figure bounded by straight lines x = 0, x = 2 and the curves y = 2x, y = 2x – x2 is ______.
Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.
Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.
Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).
Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.
Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.
Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.