मराठी

Determine the Area Under the Curve Y = √ a 2 − X 2 Included Between the Lines X = 0 and X = A. - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the area under the curve y = \[\sqrt{a^2 - x^2}\]  included between the lines x = 0 and x = a.

उत्तर

We have, 
\[y = \sqrt{a^2 - x^2}\]
\[ \Rightarrow y^2 = a^2 - x^2 \]
\[ \Rightarrow x^2 + y^2 = a^2 \]
\[\text{ Since in the given equation }x^2 + y^2 = a^2 , \text{ all the powers of both } x\text{ and }y\text{ are even, the curve is symmetrical about both the axis }. \]
\[ \therefore\text{ Required area = area enclosed by circle in first quadrant }\]
\[(a, 0 ), ( - a, 0)\text{ are the points of intersection of curve and }x -\text{ axis }\]
\[(0, a), (0, - a)\text{ are the points of intersection of curve and }y -\text{ axis }\]
\[\text{ Slicing the area in the first quadrant into vertical stripes of height }= \left| y \right|\text{ and width }= dx\]
\[ \therefore\text{ Area of approximating rectangle }= \left| y \right| dx\]
\[\text{ Approximating rectangle can move between }x = 0\text{ and }x = a\]
\[A =\text{ Area of enclosed curve in first quadrant }= \int_0^a \left| y \right| dx\]
\[ \Rightarrow A = \int_0^a \sqrt{a^2 - x^2} d x\]
\[ = \left[ \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} \right]_0^a \]
\[ = \frac{1}{2} a^2 \sin^{- 1} 1\]
\[ = \frac{1}{2} a^2 \frac{\pi}{2} \]
\[ = \frac{a^2 \pi}{4}\text{ sq units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.1 | Q 13 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the parabola y2 = 4ax and its latus rectum.


Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Find the area bounded by the curve y = sin x between x = 0 and x = 2π.


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area common to the circle x2 + y2 = 16 a2 and the parabola y2 = 6 ax.
                                   OR
Find the area of the region {(x, y) : y2 ≤ 6ax} and {(x, y) : x2 + y2 ≤ 16a2}.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Make a sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 3; 0 ≤ y ≤ 2x + 3; 0 ≤ x ≤ 3} and find its area using integration.


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


Let f(x) be a continuous function such that the area bounded by the curve y = f(x), x-axis and the lines x = 0 and x = a is `a^2/2 + a/2 sin a + pi/2 cos a`, then `f(pi/2)` =


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Using integration, find the area of the region bounded by the curves x2 + y2 = 4, x = `sqrt(3)`y and x-axis lying in the first quadrant.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Sketch the region enclosed bounded by the curve, y = x |x| and the ordinates x = −1 and x = 1.


Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×