Advertisements
Advertisements
प्रश्न
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
उत्तर
\[y = \sqrt{x + 1} \text{ in }\left[ 0, 4 \right] \text{ represents a curve which is part of a parabola }\]
\[x = 4\text{ represents a line parallel to }y - \text{ axis and cutting }x - \text{ axis at }(4, 0)\]
\[\text{ Enclosed area bound by the curve and lines }x = 0\text{ and }x = 4\text{ is OABCO}\]
\[\text{ Consider a vertical strip of lenght }= \left| y \right| \text{ and width }= dx\]
\[ \therefore\text{ Area of approximating rectangle }= \left| y \right| dx\]
\[\text{ The approximating rectangle moves from }x = 0\text{ to } x = 4\]
\[ \Rightarrow\text{ A = Area OABCO }= \int_0^4 \left| y \right| dx\]
\[ \Rightarrow A = \int_0^4 y dx ..................\left[ y > 0 \Rightarrow \left| y \right| = y \right]\]
\[ \Rightarrow A = \int_0^4 \sqrt{x + 1} dx\]
\[ \Rightarrow A = \int_0^4 \left( x + 1 \right)^\frac{1}{2} dx\]
\[ \Rightarrow A = \left[ \frac{\left( x + 1 \right)^\frac{3}{2}}{\frac{3}{2}} \right]_0^4 \]
\[ \Rightarrow A = \frac{2}{3}\left( 5^{{}^\frac{3}{2}} - 1 \right)\text{ sq . units }\]
\[ \therefore\text{ Enclosed area between the curve and given lines }= \frac{2}{3}\left( 5^{{}^\frac{3}{2}} - 1 \right)\text{ sq . units }\]
APPEARS IN
संबंधित प्रश्न
Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.
Using definite integrals, find the area of the circle x2 + y2 = a2.
Find the area bounded by the curve y = cos x, x-axis and the ordinates x = 0 and x = 2π.
Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.
Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Find the area of the region bounded by y = | x − 1 | and y = 1.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)
The area bounded by y = 2 − x2 and x + y = 0 is _________ .
If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2
The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .
Area bounded by parabola y2 = x and straight line 2y = x is _________ .
The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .
Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
Sketch the graphs of the curves y2 = x and y2 = 4 – 3x and find the area enclosed between them.
Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`
Find the area of the curve y = sin x between 0 and π.
Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.
Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2
Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.
Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.
Find the area bounded by the curve y = sinx between x = 0 and x = 2π.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
The area of the region bounded by the line y = 4 and the curve y = x2 is ______.
Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.
The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1
The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0 ≤ x - (<pi)/2` is
Find the area bounded by the curve y = |x – 1| and y = 1, using integration.
Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.
Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.
Find the area of the smaller region bounded by the curves `x^2/25 + y^2/16` = 1 and `x/5 + y/4` = 1, using integration.
Hence find the area bounded by the curve, y = x |x| and the coordinates x = −1 and x = 1.