मराठी

The area bounded by y-axis, y=cosx and y=sinx,0 ≤x-<π2 is -

Advertisements
Advertisements

प्रश्न

The area bounded by `y`-axis, `y = cosx` and `y = sinx, 0  ≤ x - (<pi)/2` is

पर्याय

  • `2(sqrt(2) - 1)`

  • `sqrt(2) - 1`

  • `sqrt(2) + 1`

  • `sqrt(2)`

MCQ

उत्तर

`sqrt(2) - 1`

Explanation:

The curves are `y = cosx, y = sin x, 0  ≤ x - (<pi)/2`

The curves meet where `sin x = cos x` to `tan x = 1`

⇒ `x = pi/2, sin  pi/4 = cos  pi/4 = 1/sqrt(2)`

Graphs of these curve is as shown in figure.

They intersect at `P(pi/4, 1/sqrt(2))`

The area bounded by `y`-axis, `y = cos  x` and `y = sin x(0 ≤ x (<pi)/2)`

= Shaded area = Area of region ΔOPBO

= Area of region ΔPAO + Area of region ΔPBA

= `int_0^(1/sqrt(2)) sin^-1  ydy + int_(1/sqrt(2))^1 cos^-1  ydy`

= Integrating each by parts taking II as first function

A = `[y sin^-1  y - int  1/sqrt(1 - y^2) * ydy]_0^(1/sqrt(2)) + [y cos^-1 y +  int 1/sqrt(1 - y^2) y dy]_(1/sqrt(2))^1`

= `[y sin^-1  y + sqrt(1 - y^2)]_0^(1/sqrt(2)) + [y cos^-1 y - sqrt(1 - y^2)]_(1/sqrt(2))^1`

= `[1/sqrt(2) sin^-1  1/sqrt(2) + sqrt(1/2) - 1] + [(cos^-1 - 0) - (1/sqrt(2) cos^-1  1/sqrt(2) - 1/sqrt(2))]`

= `(1/sqrt(2) * pi/4 + 1/sqrt(2)) + (0 - 1/sqrt(2) * pi/4 + 1/sqrt(2))`

= `2 xx 1/sqrt(2) - 1`

= `sqrt(2) - 1`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×