Advertisements
Advertisements
प्रश्न
If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.
उत्तर
The parabola y2 = 16ax opens towards the positive x-axis and its focus is (4a, 0).
The parabola x2 = 16ay opens towards the positive y-axis and its focus is (0, 4a).
Solving y2 = 16ax and x2 = 16ay, we get
\[\left( \frac{x^2}{16a} \right)^2 = 16ax\]
\[ \Rightarrow x^4 = \left( 16a \right)^3 x\]
\[ \Rightarrow x^4 - \left( 16a \right)^3 x = 0\]
\[ \Rightarrow x\left[ x^3 - \left( 16a \right)^3 \right] = 0\]
\[ \Rightarrow x = 0\text{ or }x = 16a\]
So, the points of intersection of the given parabolas are O(0, 0) and A(16a, 16a).
Area enclosed by the given parabolas
= Area of the shaded region
\[= \int_0^{16a} \sqrt{16ax}dx - \int_0^{16a} \frac{x^2}{16a}dx\]
\[ = \left.4\sqrt{a} \times \frac{x^\frac{3}{2}}{\frac{3}{2}}\right|_0^{16a} - \left.\frac{1}{16a} \times \frac{x^3}{3}\right|_0^{16a} \]
\[ = \frac{8\sqrt{a}}{3}\left[ \left( 16a \right)^\frac{3}{2} - 0 \right] - \frac{1}{48a}\left[ \left( 16a \right)^3 - 0 \right]\]
\[ = \frac{8\sqrt{a}}{3} \times 64a\sqrt{a} - \frac{256 a^2}{3}\]
\[ = \frac{512 a^2}{3} - \frac{256 a^2}{3}\]
\[ = \frac{256 a^2}{3}\text{ square units }\]
But,
Area enclosed by the given parabolas = \[\frac{1024}{3}\] square units ..........(Given)
\[\therefore \frac{256 a^2}{3} = \frac{1024}{3}\]
\[ \Rightarrow a^2 = \frac{1024}{256} = 4\]
\[ \Rightarrow a = 2 ............\left( a > 0 \right)\]
Thus, the value of a is 2.
APPEARS IN
संबंधित प्रश्न
Find the area bounded by the curve y2 = 4ax, x-axis and the lines x = 0 and x = a.
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.
Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4
Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.
Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.
Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.
Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.
Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.
Find the area enclosed by the curve x = 3cost, y = 2sin t.
Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4).
Find the area bounded by the parabola y = 2 − x2 and the straight line y + x = 0.
Find the area enclosed by the curves y = | x − 1 | and y = −| x − 1 | + 1.
The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .
The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .
The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .
The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .
The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is
Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.
Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).
Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x
Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.
Find the area of the region bounded by y = `sqrt(x)` and y = x.
The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.
The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.
For real number a, b (a > b > 0),
let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π
Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.
Then the value of (a – b)2 is equal to ______.
Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates x = `π/4` and x = `β > π/4` is `(βsinβ + π/4 cos β + sqrt(2)β)`. Then `f(π/2)` is ______.
Sketch the region bounded by the lines 2x + y = 8, y = 2, y = 4 and the Y-axis. Hence, obtain its area using integration.
Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.