मराठी

Draw a Rough Sketch to Indicate the Region Bounded Between the Curve Y2 = 4x and the Line X = 3. Also, Find the Area of this Region. - Mathematics

Advertisements
Advertisements

प्रश्न

Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.

बेरीज

उत्तर

\[y^2 = 4x \text{ represents a parabola with vertex at (0, 0) and axis of symmetry along the + ve direction of } x\text{ axis }\]
\[x = 3\text{ is a line parallel to } y \text{ axis and cutting} x \text{ axis at (3, 0) }\]
\[\text{ Since }y^2 = 4x\text{ is symmetrical about }x\text{ axis , }\]
\[ \therefore\text{ Required area A }= \text{ OA }\hspace{0.167em} \text{CO }= 2 \times\text{ area OABO}\]
\[\text{ Slicing the area above }x \text{ axis into vertical strips of length }= \left| y \right|\text{ and width }= dx \]
\[\text{ Area of corresponding rectangle }= \left| y \right| dx\]
\[\text{ The corresponding rectangle moves from }x = 0\text{ to }x = 3\]
\[A = 2 \times\text{ area OABO }\]
\[ \Rightarrow A = 2 \int_0^3 \left| y \right| dx = 2 \int_0^3 \left| y \right| dx ..................\left[ As, \left| y \right| = y, y > 0 \right]\]
\[ \Rightarrow A = 2 \int_0^3 \sqrt{\left( 4x \right)} dx \]
\[ \Rightarrow A = 4 \int_0^3 \sqrt{x} dx \]
\[ \Rightarrow A = 4 \left[ \frac{x^\frac{3}{2}}{\frac{3}{2}} \right]_0^3 = \frac{8}{3} \left[ x^\frac{3}{2} \right]_0^3 = \frac{8}{3} \times 3\sqrt{3} = 8\sqrt{3}\text{ sq . units }\]
\[ \therefore \text{ Area of region bound by curve }y^2 = 4x \text{ and }x = 3\text{ is }8\sqrt{3}\text{ sq . units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.1 | Q 5 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis


triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Using integration, find the area of the region bounded by the following curves, after making a rough sketch: y = 1 + | x + 1 |, x = −2, x = 3, y = 0.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Using integration, find the area of the region bounded by the triangle ABC whose vertices A, B, C are (−1, 1), (0, 5) and (3, 2) respectively.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Find the area of the region bounded by the curves y = x − 1 and (y − 1)2 = 4 (x + 1).


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Using integration find the area of the region bounded by the curves \[y = \sqrt{4 - x^2}, x^2 + y^2 - 4x = 0\] and the x-axis.


Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.


Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The area bounded by the curves y = sin x between the ordinates x = 0, x = π and the x-axis is _____________ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .


Using integration, find the area of the region bounded by the line x – y + 2 = 0, the curve x = \[\sqrt{y}\] and y-axis.


Draw a rough sketch of the curve y2 = 4x and find the area of region enclosed by the curve and the line y = x.


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Find the area of the curve y = sin x between 0 and π.


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Find the area of the region bounded by y = `sqrt(x)` and y = x.


The area of the region bounded by the curve x2 = 4y and the straight line x = 4y – 2 is ______.


The region bounded by the curves `x = 1/2, x = 2, y = log x` and `y = 2^x`, then the area of this region, is


Make a rough sketch of the region {(x, y): 0 ≤ y ≤ x2, 0 ≤ y ≤ x, 0 ≤ x ≤ 2} and find the area of the region using integration.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×