मराठी

Find the Area Enclosed by the Parabolas Y = 4x − X2 and Y = X2 − X. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area enclosed by the parabolas y = 4x − x2 and y = x2 − x.

बेरीज

उत्तर


We have, 
\[y = 4x - x^2\]  and \[y = x^2 - x\]
The points of intersection of two curves is obtained by solving the simultaneous equations
\[\therefore x^2 - x = 4x - x^2 \]
\[ \Rightarrow 2 x^2 - 5x = 0 \]
\[ \Rightarrow x = 0\text{ or }x = \frac{5}{2}\]
\[ \Rightarrow y = 0\text{ or }y = \frac{15}{4}\]
\[ \Rightarrow O\left( 0, 0 \right)\text{ and }D \left( \frac{5}{2} , \frac{15}{4} \right)\text{ are points of intersection of two parabolas .} \]
\[ \text{ In the shaded area CBDC , consider P }(x, y_2 )\text{ on }y = 4x - x^2\text{ and Q }(x, y_1 )\text{ on }y = x^2 - x\]
\[\text{ Area }\left( OBDCO \right) =\text{ area }\left( OBCO \right) +\text{ area }\left( CBDC \right)\]
\[ = \int_0^1 \left| y \right| dx + \int_1^\frac{5}{2} \left| y_2 - y_1 \right| dx\]
\[ = \int_0^1 y dx + \int_1^\frac{5}{2} \left( y_2 - y_1 \right) dx ............\left\{ \because y > 0 \Rightarrow \left| y \right| = y\text{ and } \left| y_2 - y_1 \right| \Rightarrow y_2 - y_1\text{ as }y_2 > y_1 \right\} \]
\[ = \int_0^1 \left( 4x - x^2 \right)dx + \int_1^\frac{5}{2} \left\{ \left( 4x - x^2 \right) - \left( x^2 - x \right) \right\}dx\]
\[ = \left[ \frac{4 x^2}{2} - \frac{x^3}{3} \right]_0^1 + \int_1^\frac{5}{2} \left( 5x - 2 x^2 \right)dx\]
\[ = \left[ 2 x^2 - \frac{x^3}{3} \right]_0^1 + \left[ \frac{5 x^2}{2} - \frac{2 x^3}{3} \right]_1^\frac{5}{2} \]
\[ = \left( 2 - \frac{1}{3} \right) + \left[ \frac{5}{2} \left( \frac{5}{2} \right)^2 - \frac{2}{3} \left( \frac{5}{2} \right)^3 - \frac{5}{2} + \frac{2}{3} \right]\]
\[ = \left( \frac{5}{3} \right) + \left[ \left( \frac{5}{2} \right)^3 \left( 1 - \frac{2}{3} \right) - \frac{11}{6} \right]\]
\[ = \frac{5}{3} + \left( \frac{5}{2} \right)^3 \frac{1}{3} - \frac{11}{6}\]
\[ = \frac{10 - 11}{6} + \frac{125}{24} \]
\[ = \frac{121}{24}\text{ sq units }. ...... . \left( 1 \right)\]
\[\text{ Area }\left( OCV'O \right) = \int_0^1 \left| y \right| dx = \int_0^1 - y dx ............\left\{ \because y < 0 \Rightarrow \left| y \right| = - y \right\}\]
\[ = \int_0^1 - \left( x^2 - x \right)dx\]
\[ = \int_0^1 \left( x - x^2 \right) dx\]
\[ = \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 \]
\[ = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}\text{ sq units }. ...... . \left( 2 \right)\]
\[\text{ From }\left( 1 \right)\text{ and }\left( 2 \right)\]
\[\text{ Shaded area = area }\left( OBDCO \right)\text{ and area }\left( OCV'O \right)\]
\[ = \frac{121}{24} + \frac{1}{6}\]
\[ = \frac{125}{24}\text{ sq units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 48 | पृष्ठ ५३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).


Find the area of the region bounded by the curve x2 = 16y, lines y = 2, y = 6 and Y-axis lying in the first quadrant.


Find the area bounded by the curve y = sin x between x = 0 and x = 2π.


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Calculate the area of the region bounded by the parabolas y2 = x and x2 = y.


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


Find the area of the figure bounded by the curves y = | x − 1 | and y = 3 −| x |.


If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m. 

 


The area bounded by y = 2 − x2 and x + y = 0 is _________ .


If An be the area bounded by the curve y = (tan x)n and the lines x = 0, y = 0 and x = π/4, then for x > 2


The area bounded by the parabola y2 = 4ax and x2 = 4ay is ___________ .


The closed area made by the parabola y = 2x2 and y = x2 + 4 is __________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


The area of the region bounded by the curve y = x2 and the line y = 16 ______.


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Find the area of the region included between y2 = 9x and y = x


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola y2 = x and the x-axis.


What is the area of the region bounded by the curve `y^2 = 4x` and the line `x` = 3.


The area bounded by the curve `y = x^3`, the `x`-axis and ordinates `x` = – 2 and `x` = 1


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


Let g(x) = cosx2, f(x) = `sqrt(x)`, and α, β (α < β) be the roots of the quadratic equation 18x2 – 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0, is ______.


Using integration, find the area bounded by the curve y2 = 4ax and the line x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×