मराठी

Find the Area of the Region {(X, Y) : Y2 ≤ 8x, X2 + Y2 ≤ 9}. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.

बेरीज

उत्तर

\[\text{ Let }R = \left\{ \left( x, y \right): y^2 \leq 8x, x^2 + y^2 \leq 9 \right\}\]
\[ R_1 = \left\{ \left( x, y \right): y^2 \leq 8x \right\}\]
\[ R_2 = \left\{ \left( x, y \right): x^2 + y^2 \leq 9 \right\}\]
\[\text{ Thus, }R = R_1 \cap R_2 \]
\[\text{ Now, }y^2 = 8x\text{ represents a parabola with vertex O(0, 0) and symmetrical about }x -\text{ axis }\]
\[\text{ Thus, }R_1\text{ such that }y^2 \leq 8x\text{ is the area inside the parabola }\]
\[\text{ Also, }x^2 + y^2 = 9\text{ represents with circle with centre O(0, 0) and radius 3 units .} \]
\[\text{ The circle cuts the x axis at C(3, 0) and C'( - 3, 0 ) and }Y -\text{ axis at B(0, 3) and B'(0, - 3 ) }\]
\[\text{ Thus, }R_2 \text{ such that }x^2 + y^2 \leq 9\text{ is the area inside the circle }\]
\[ \Rightarrow R = R_1 \cap R_2 =\text{ Area OACA'O }= 2 \left( \text{ shaded area OACO }\right) . . . \left( 1 \right)\]
The point of intersection between the two curves is obtained by solving the two equations

\[ y^2 = 8x\text{ and }x^2 + y^2 = 9 \]
\[ \Rightarrow x^2 + 8x = 9 \]
\[ \Rightarrow x^2 + 8x - 9 = 0\]
\[ \Rightarrow \left( x + 9 \right)\left( x - 1 \right) = 0\]
\[ \Rightarrow x = - 9\text{ or }x = 1\]
\[\text{ Since, parabola is symmetric about + ve }x - \text{ axis, }x = 1\text{ is the correct solution }\]
\[ \Rightarrow y^2 = 8 \]
\[ \Rightarrow y = \pm 2\sqrt{2}\]
\[\text{ Thus, A}\left( 1, 2\sqrt{2} \right)\text{ and A' }\left( 1, - 2\sqrt{2} \right)\text{ are the two points of intersection }\]
\[\text{ Area OACO = area OADO + area DACD }. . . \left( 2 \right)\]
\[\text{ Area OADO }= \int_0^1 \sqrt{8x} dx .............\left[ \text{ Area bound by curve }y^2 = 8x\text{ between }x = 0\text{ and }x = 1 \right]\]
\[ = 2\sqrt{2} \left[ \frac{x^\frac{3}{2}}{\frac{3}{2}} \right]_0^1 \]
\[ \Rightarrow\text{ Area OADO }= \frac{4\sqrt{2}}{3} . . . \left( 3 \right)\]
\[ \therefore\text{ Area DACD = area bound by }x^2 + y^2 = 9 \text{ between
}x = 1\text{ to }x = 3\]
\[ \Rightarrow A = \int_1^3 \sqrt{9 - x^2} dx \]
\[ = \left[ \frac{1}{2}x\sqrt{9 - x^2} + \frac{1}{2}9 \sin^{- 1} \left( \frac{x}{3} \right) \right]_1^3 \]
\[ = 0 + \frac{9}{2} si n^{- 1} \left( \frac{3}{3} \right) - \frac{1}{2}\sqrt{9 - 1^2} - \frac{9}{2} si n^{- 1} \left( \frac{1}{3} \right)\]
\[ = \frac{9}{2} si n^{- 1} 1 - \frac{1}{2}\sqrt{8} - \frac{9}{2} si n^{- 1} \left( \frac{1}{3} \right)\]
\[ = \frac{9}{2} \frac{\pi}{2} - \frac{1}{2}2\sqrt{2} - \frac{9}{2} si n^{- 1} \left( \frac{1}{3} \right)\]
\[ \Rightarrow\text{ Area DACD }= 9 \frac{\pi}{4} - \sqrt{2} - \frac{9}{2} si n^{- 1} \left( \frac{1}{3} \right) . . . \left( 4 \right)\]
\[\text{ From }\left( 1 \right), \left( 2 \right), \left( 3 \right)\text{ and }\left( 4 \right)\]
\[R =\text{ Area OACA'O }\]
\[ = 2\left( \frac{4\sqrt{2}}{3} + 9 \frac{\pi}{4} - \sqrt{2} - \frac{9}{2} si n^{- 1} \left( \frac{1}{3} \right) \right)\]
\[ = 2\left( \frac{4\sqrt{2}}{3} - \sqrt{2} + 9 \frac{\pi}{4} - \frac{9}{2} si n^{- 1} \left( \frac{1}{3} \right) \right)\]
\[ \therefore\text{ Area OACA'O }= 2\left( \frac{\sqrt{2}}{3} + \frac{9\pi}{4} - \frac{9}{2} si n^{- 1} \left( \frac{1}{3} \right) \right) \text{ sq . units }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 9 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

triangle bounded by the lines y = 0, y = x and x = 4 is revolved about the X-axis. Find the volume of the solid of revolution.


Find the area of the sector of a circle bounded by the circle x2 + y2 = 16 and the line y = x in the ftrst quadrant.


Prove that the curves y2 = 4x and x2 = 4y divide the area of square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Sketch the graph of y = |x + 4|. Using integration, find the area of the region bounded by the curve y = |x + 4| and x = –6 and x = 0.


Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Sketch the graph y = | x − 5 |. Evaluate \[\int\limits_0^1 \left| x - 5 \right| dx\]. What does this value of the integral represent on the graph.


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Using integration, find the area of the triangular region, the equations of whose sides are y = 2x + 1, y = 3x+ 1 and x = 4.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Draw a rough sketch of the region {(x, y) : y2 ≤ 5x, 5x2 + 5y2 ≤ 36} and find the area enclosed by the region using method of integration.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.


If the area enclosed by the parabolas y2 = 16ax and x2 = 16ay, a > 0 is \[\frac{1024}{3}\] square units, find the value of a.


The area bounded by the parabola y2 = 4ax, latusrectum and x-axis is ___________ .


The area bounded by the curve y = f (x), x-axis, and the ordinates x = 1 and x = b is (b −1) sin (3b + 4). Then, f (x) is __________ .


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x- axis and the lines x = 2 and x = 8.


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


The area of the region bounded by parabola y2 = x and the straight line 2y = x is ______.


The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.


Let T be the tangent to the ellipse E: x2 + 4y2 = 5 at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = `sqrt(5)` is `sqrt(5)`α + β + γ `cos^-1(1/sqrt(5))`, then |α + β + γ| is equal to ______.


The area (in sq.units) of the region A = {(x, y) ∈ R × R/0 ≤ x ≤ 3, 0 ≤ y ≤ 4, y ≤x2 + 3x} is ______.


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Using integration, find the area of the region bounded by line y = `sqrt(3)x`, the curve y = `sqrt(4 - x^2)` and Y-axis in first quadrant.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×