मराठी

Find the Area Bounded by the Curves X = Y2 and X = 3 − 2y2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area bounded by the curves x = y2 and x = 3 − 2y2.

बेरीज

उत्तर


 x = y2 is a parabola opening towards positive x-axis , having vertex at (0,0) and symmetrical about x-axis
 x = 3 − 2y2 is a parabola opening negative x-axis, having vertex at (3, 0) and symmetrical about x-axis, cutting y-axis at and B'

Solving the two equations for the point of intersection of two parabolas
\[x = y^2 \]
\[x = 3 - 2 y^2 \]
\[ \Rightarrow y^2 = 3 - 2 y^2 \]
\[ \Rightarrow 3 y^2 = 3\]
\[ \Rightarrow y = \pm 1\]
\[y = 1 , \Rightarrow x = 1\text{ and }y = - 1 \Rightarrow x = 1\]
\[ \Rightarrow E\left( 1, 1 \right)\text{ and }F\left( 1, - 1 \right)\text{ are two points of intersection . }\]
\[\text{ The curve character changes at E and F . }\]
\[\text{ Draw EF parallel to y - axis . }\]
\[C(1, 0)\text{ is the point of intersection of EF ith }x -\text{ axis }\]
\[\text{ Since both curves are symmetrical about } x - \text{ axis }, \]
\[\text{ Area of shaded region OEAFO }= 2\text{ Area OEAO }\hspace{0.167em} \]
\[ = 2\left(\text{ Area OECO + area CEAC }\right) . . . . . \left( 1 \right)\]
\[\text{ Area OECO }= \int_o^1 \left| y_1 \right| dx ............\left\{\text{ where }P\left( x, y_1 \right)\text{ is a point on }x = y^2 \right\}\]
\[ = \int_o^1 y_1 dx ............\left\{ \text{ as }y_1 > 0 \right\}\]
\[ = \int_o^1 \sqrt{x} dx\]
\[ = \left[ \frac{x^\frac{3}{2}}{\frac{3}{2}} \right]_0^1 \]
\[ = \frac{2}{3}\text{ sq units .} . . . . \left( 2 \right)\]
\[\text{ area CEAC }= \int_1^3 \left| y_2 \right| dx ...........\left\{\text{ where }Q\left( x, y_2 \right)\text{ is a point on }x = 3 - 2 y^2 \right\}\]
\[ = \int_1^3 y_2 dx ............\left\{\text{ as }y_2 > 0 \right\}\]
\[ = \int_1^3 \sqrt{\frac{3 - x}{2}}dx\]
\[ = \frac{1}{\sqrt{2}} \int_1^3 \sqrt{3 - x} dx\]
\[ = \frac{1}{\sqrt{2}} \left[ - \frac{\left( 3 - x \right)^\frac{3}{2}}{\frac{3}{2}} \right]_1^3 \]
\[ = \frac{1}{\sqrt{2}} \times \frac{2}{3}\left[ 0 + 2^\frac{3}{2} \right]\]
\[ = \frac{2 \times 2\sqrt{2}}{\sqrt{2} \times 3} = \frac{4}{3}\text{ sq . units }. . . . . \left( 3 \right)\]
\[\text{ From }\left( 1 \right), \left( 2 \right)\text{ and }\left( 3 \right), \text{ we get }\]
\[ \text{ Therefore, area of Shaded region OEAFO }= 2\left[ \frac{2}{3} + \frac{4}{3} \right] = 2 \times 2 = 4\text{ sq units }\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 32 | पृष्ठ ५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is ______.


Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Using definite integrals, find the area of the circle x2 + y2 = a2.


Draw a rough sketch of the curve y = \[\frac{\pi}{2} + 2 \sin^2 x\] and find the area between x-axis, the curve and the ordinates x = 0, x = π.


Draw a rough sketch of the curve \[y = \frac{x}{\pi} + 2 \sin^2 x\] and find the area between the x-axis, the curve and the ordinates x = 0 and x = π.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Using integration, find the area of the region bounded by the triangle whose vertices are (2, 1), (3, 4) and (5, 2).


Find the area of the region {(x, y) : y2 ≤ 8x, x2 + y2 ≤ 9}.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Find the area of the region bounded by y = | x − 1 | and y = 1.


Find the area of the region enclosed between the two curves x2 + y2 = 9 and (x − 3)2 + y2 = 9.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using horizontal strips.


The area included between the parabolas y2 = 4x and x2 = 4y is (in square units)


The area of the region bounded by the parabola (y − 2)2 = x − 1, the tangent to it at the point with the ordinate 3 and the x-axis is _________ .


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices area A(1, 2), B (2, 0) and C (4, 3).


Find the area of the region bounded by the parabola y2 = 2x and the straight line x – y = 4.


Find the area of the region bounded by the curves y2 = 9x, y = 3x


Find the area of the region bounded by the curve y = x3 and y = x + 6 and x = 0


Sketch the region `{(x, 0) : y = sqrt(4 - x^2)}` and x-axis. Find the area of the region using integration.


Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7.


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


The area of the region bounded by the y-axis, y = cosx and y = sinx, 0 ≤ x ≤ `pi/2` is ______.


Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Area (in sq.units) of the region outside `|x|/2 + |y|/3` = 1 and inside the ellipse `x^2/4 + y^2/9` = 1 is ______.


Find the area of the following region using integration ((x, y) : y2 ≤ 2x and y ≥ x – 4).


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×