मराठी

Sketch the Region Bounded by the Curves Y = X2 + 2, Y = X, X = 0 and X = 1. Also, Find the Area of this Region. - Mathematics

Advertisements
Advertisements

प्रश्न

Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.

बेरीज

उत्तर

We have,
\[y = x^2 + 2\] and \[y = x\]
We see that parabola and the line \[y = x\] do not intersect \[x = 1\]  is a line parallel to y axis Point of intersection between parabola and \[x = 1\] is \[\text{ Putting }x = 1\text{ in }y = x^2 + 2,\text{ we get, }\]
\[y = 1 + 2 = 3\]
\[\text{ Point of intersection of two lines is given by }\]
\[\text{ Putting }x = 1\text{ in }y = x, \text{ we get, }\]
\[y = 1 \]
\[\text{ Consider a vetical strip of length }\left| y_2 - y_1 \right| \text{ and width }= dx \text{ such that }P\left( x, y_2 \right)\text{ lies on parabola and Q }\left( x , y_1 \right)\text{ lies on }y = x\]
\[\text{ Shaded area }= \int_0^1 \left| y_2 - y_1 \right| dx\]
\[ = \int_0^1 \left( y_2 - y_1 \right) dx ..............\left\{ \because \left| y_2 - y_1 \right| \Rightarrow y_2 - y_1 \text{ as }y_2 > y_1 , \right\}\]
\[ = \int_0^1 \left\{ \left( x^2 + 2 \right) - \left( x \right) \right\} dx\]
\[ = \int_0^1 \left( x^2 + 2 - x \right)dx\]
\[ = \left[ \frac{x^3}{3} - \frac{x^2}{2} + 2x \right]_0^1 \]
\[ = \frac{1}{3} - \frac{1}{2} + 2\]
\[ = \frac{2 - 3 + 12}{6}\]
\[ = \frac{11}{6}\text{ sq units }\]
\[\text{ Thus, area enclosed by parabola and given two lines }= \frac{11}{6}\text{ sq units }\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Areas of Bounded Regions - Exercise 21.3 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 21 Areas of Bounded Regions
Exercise 21.3 | Q 31 | पृष्ठ ५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the area bounded by the curve y2 = 4axx-axis and the lines x = 0 and x = a.


Find the area of the region bounded by the parabola y2 = 16x and the line x = 3.


Find the area of the region common to the circle x2 + y2 =9 and the parabola y2 =8x


Using integration, find the area of the region bounded by the lines y = 2 + x, y = 2 – x and x = 2.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5.


Find the area of the region bounded by the parabola y2 = 4ax and the line x = a. 


Find the area of the region bounded by the curve \[x = a t^2 , y = 2\text{ at }\]between the ordinates corresponding t = 1 and t = 2.


Find the area of the region bounded by y =\[\sqrt{x}\] and y = x.


Find the area of the region between the circles x2 + y2 = 4 and (x − 2)2 + y2 = 4.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Find the area bounded by the lines y = 4x + 5, y = 5 − x and 4y = x + 5.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


The area bounded by the curve y = loge x and x-axis and the straight line x = e is ___________ .


The area bounded by the curve y = x4 − 2x3 + x2 + 3 with x-axis and ordinates corresponding to the minima of y is _________ .


The ratio of the areas between the curves y = cos x and y = cos 2x and x-axis from x = 0 to x = π/3 is ________ .


Area bounded by parabola y2 = x and straight line 2y = x is _________ .


The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .


Find the coordinates of a point of the parabola y = x2 + 7x + 2 which is closest to the straight line y = 3x − 3.


Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity. 


Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0


Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.


Find the area of region bounded by the line x = 2 and the parabola y2 = 8x


Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0


The area of the region bounded by the curve y = `sqrt(16 - x^2)` and x-axis is ______.


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


The area of the region bounded by the ellipse `x^2/25 + y^2/16` = 1 is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Area of the region bounded by the curve `y^2 = 4x`, `y`-axis and the line `y` = 3 is:


Find the area of the region bounded by the curve `y^2 - x` and the line `x` = 1, `x` = 4 and the `x`-axis.


Find the area of the region bounded by `y^2 = 9x, x = 2, x = 4` and the `x`-axis in the first quadrant.


Find the area of the region bounded by the curve `y = x^2 + 2, y = x, x = 0` and `x = 3`


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


The area (in square units) of the region bounded by the curves y + 2x2 = 0 and y + 3x2 = 1, is equal to ______.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×