Advertisements
Advertisements
प्रश्न
Find the equation of the standard ellipse, taking its axes as the coordinate axes, whose minor axis is equal to the distance between the foci and whose length of the latus rectum is 10. Also, find its eccentricity.
उत्तर
\[\text{ According to the question, the minor axis is equal to the distance between the foci }.\]
\[\text{ i . e } . 2b = 2\text{ ae and } \frac{{2b}^2}{a} = 10 \text{ or } b^2 = 5a \]
\[ \Rightarrow b = ae\]
\[ \Rightarrow b^2 = a^2 e^2 \]
\[ \Rightarrow b^2 = a^2 \left( 1 - \frac{b^2}{a^2} \right) \left( \because e = \sqrt{1 - \frac{b^2}{a^2}} \right)\]
\[ \Rightarrow b^2 = a^2 - b^2 \]
\[ \Rightarrow a^2 = 2 b^2 \]
\[ \Rightarrow a^2 = 10a \left( \because b^2 = 5a \right)\]
\[ \Rightarrow a = 10\]
\[ \Rightarrow b^2 = 5a \]
\[ \Rightarrow b^2 = 50\]
\[\text{ Substituting the values of a and b in the equation of an ellipse, we get }:\]
\[\frac{x^2}{100} + \frac{y^2}{50} = 1\]
\[ \therefore x^2 + 2 y^2 = 100\]
\[\text{This is the required equation of the ellipse }.\]
APPEARS IN
संबंधित प्रश्न
Find the area bounded by the curve y2 = 4ax, x-axis and the lines x = 0 and x = a.
Find the area of the region bounded by the curve y = sinx, the lines x=-π/2 , x=π/2 and X-axis
Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
Find the area of ellipse `x^2/1 + y^2/4 = 1`
Find the area of the region bounded by the parabola y2 = 4ax and the line x = a.
Sketch the graph of y = \[\sqrt{x + 1}\] in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.
Draw the rough sketch of y2 + 1 = x, x ≤ 2. Find the area enclosed by the curve and the line x = 2.
Find the area bounded by the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and the ordinates x = ae and x = 0, where b2 = a2 (1 − e2) and e < 1.
Find the area of the region bounded by x2 + 16y = 0 and its latusrectum.
Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.
Draw a rough sketch and find the area of the region bounded by the two parabolas y2 = 4x and x2 = 4y by using methods of integration.
Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.
Find the area enclosed by the parabolas y = 5x2 and y = 2x2 + 9.
Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2= 32.
Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.
Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.
Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]
If the area bounded by the parabola \[y^2 = 4ax\] and the line y = mx is \[\frac{a^2}{12}\] sq. units, then using integration, find the value of m.
The area bounded by the parabola x = 4 − y2 and y-axis, in square units, is ____________ .
The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .
The area bounded by the curve y = x |x| and the ordinates x = −1 and x = 1 is given by
Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0
Find the area enclosed by the curve y = –x2 and the straight lilne x + y + 2 = 0
Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π
Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.
Using integration, find the area of the region bounded between the line x = 4 and the parabola y2 = 16x.
Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`
Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.